Obstacle and Planar Object Detection using Sparse 3D Information for a Smart Walker

被引:0
|
作者
Cloix, Severine [1 ,2 ]
Weiss, Viviana [2 ]
Bologna, Guido [2 ]
Pun, Thierry [2 ]
Hasler, David [1 ]
机构
[1] CSEM SA, Vis Embedded Syst, Jaquet Droz 1, Neuchatel, Switzerland
[2] Univ Geneva, Comp Sci Dept, Carouge, Switzerland
关键词
Binocular Stereo Vision; Sparse 3D Map; Obstacle Detection; Object Detection; Boosting; Elderly Care;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the increasing proportion of senior citizens, many mobility aid devices have been developed such as the rollator. However, under some circumstances, the latter may cause accidents. The EyeWalker project aims to develop a small and autonomous device for rollators to help elderly people, especially those with some degree of visual impairment, avoiding common dangers like obstacles and hazardous ground changes, both outdoors and indoors. We propose a method of real-time stereo obstacle detection using sparse 3D information. Working with sparse 3D points, in opposition to dense 3D maps, is computationally more efficient and more appropriate for a long battery-life. In our approach, 3D data are extracted from a stereo-rig of two 2D high dynamic range cameras developed at the CSEM (Centre Suisse d'Electronique et de Microtechnique) and processed to perform a boosting classification. We also present a deformable 3D object detector for which the 3D points are combined in several different ways and result in a set of pose estimates used to execute a less ill-posed classification. The evaluation, carried out on real stereo images of obstacles described with both 2D and 3D features, shows promising results for a future use in real-world conditions.
引用
收藏
页码:292 / 298
页数:7
相关论文
共 50 条
  • [1] Super Sparse 3D Object Detection
    Fan, Lue
    Yang, Yuxue
    Wang, Feng
    Wang, Naiyan
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12490 - 12505
  • [2] Fully Sparse 3D Object Detection
    Fan, Lue
    Wang, Feng
    Wang, Naiyan
    Zhang, Zhaoxiang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [3] DROP SPARSE CONVOLUTION FOR 3D OBJECT DETECTION
    Zhu, Taohong
    Shen, Jun
    Wang, Chali
    Xiong, Huiyuan
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 3185 - 3189
  • [4] Sparse Dense Fusion for 3D Object Detection
    Gao, Yulu
    Sima, Chonghao
    Shi, Shaoshuai
    Di, Shangzhe
    Liu, Si
    Li, Hongyang
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 10939 - 10946
  • [5] Fully Sparse Fusion for 3D Object Detection
    Li, Yingyan
    Fan, Lue
    Liu, Yang
    Huang, Zehao
    Chen, Yuntao
    Wang, Naiyan
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (11) : 7217 - 7231
  • [6] LiDAR based 3D object detection using CCD information
    Kim, Jung-Un
    Kang, Hang-Bong
    2017 IEEE THIRD INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2017), 2017, : 303 - 309
  • [7] Virtual Sparse Convolution for Multimodal 3D Object Detection
    Wu, Hai
    Wen, Chenglu
    Shi, Shaoshuai
    Li, Xin
    Wang, Cheng
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21653 - 21662
  • [8] Focal Sparse Convolutional Networks for 3D Object Detection
    Chen, Yukang
    Li, Yanwei
    Zhang, Xiangyu
    Sun, Jian
    Jia, Jiaya
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5418 - 5427
  • [9] Sparse Activation Maps for Interpreting 3D Object Detection
    Chen, Qiuxiao
    Li, Pengfei
    Xu, Meng
    Qi, Xiaojun
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 76 - 84
  • [10] 3D Object Detection Method Using LiDAR Information in Multiple Frames
    Kim, Jung-Un
    Min, Jihong
    Kang, Hang-Bong
    IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I, 2017, 10484 : 276 - 286