Comparison of statistical and dynamical downscaling results from the WRF model

被引:52
|
作者
Le Roux, Renan [1 ]
Katurji, Marwan [2 ]
Zawar-Reza, Peyman [2 ]
Quenol, Herve [1 ]
Sturman, Andrew [2 ]
机构
[1] Univ Rennes 2, CNRS, COSTEL, LETG,UMR 6554, Pl Recteur Henri Moal, Rennes, France
[2] Univ Canterbury, Ctr Atmospher Res, Christchurch, New Zealand
关键词
REGIONAL CLIMATE; PRECIPITATION; TEMPERATURE; REGRESSION; SCENARIOS; BASIN;
D O I
10.1016/j.envsoft.2017.11.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study compares two methods of downscaling the Weather Research and Forecasting model output temperatures to 1 km resolution over the largest vineyard area in New Zealand. The WRF dynamical downscaling is obtained via a four-level nested grid configuration to create a 1-km grid. The statistical downscaling is achieved using a Support Vector Regression (SVR) between WRF 3-km output temperatures and terrain at 1 km resolution. The bias of the two approaches is evaluated using automatic weather stations, and the averages of both 1-km and 3-km model output are associated with a cold bias. The sensitivity of the methods to the input sample size is assessed using statistical indicators. The results demonstrate that for an equivalent sample size, there is no need to dynamically downscale the model temperatures from 3 to 1 km, as statistical downscaling seems to provide results very close to those of dynamical downscaling, while requiring less computer resources. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 73
页数:7
相关论文
共 50 条
  • [1] Using a coupled lake model with WRF for dynamical downscaling
    Mallard, Megan S.
    Nolte, Christopher G.
    Bullock, O. Russell
    Spero, Tanya L.
    Gula, Jonathan
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (12) : 7193 - 7208
  • [2] A Hybrid Statistical-Dynamical Downscaling of Air Temperature over Scandinavia Using the WRF Model
    Jianfeng WANG
    Ricardo M.FONSECA
    Kendall RUTLEDGE
    Javier MARTíN-TORRES
    Jun YU
    AdvancesinAtmosphericSciences, 2020, 37 (01) : 57 - 74
  • [3] A Hybrid Statistical-Dynamical Downscaling of Air Temperature over Scandinavia Using the WRF Model
    Jianfeng Wang
    Ricardo M. Fonseca
    Kendall Rutledge
    Javier Martín-Torres
    Jun Yu
    Advances in Atmospheric Sciences, 2020, 37 : 57 - 74
  • [4] A Hybrid Statistical-Dynamical Downscaling of Air Temperature over Scandinavia Using the WRF Model
    Wang, Jianfeng
    Fonseca, Ricardo M.
    Rutledge, Kendall
    Martin-Torres, Javier
    Yu, Jun
    ADVANCES IN ATMOSPHERIC SCIENCES, 2020, 37 (01) : 57 - 74
  • [5] Comparison of Analysis and Spectral Nudging Techniques for Dynamical Downscaling with the WRF Model over China
    Ma, Yuanyuan
    Yang, Yi
    Mai, Xiaoping
    Qiu, Chongjian
    Long, Xiao
    Wang, Chenghai
    ADVANCES IN METEOROLOGY, 2016, 2016
  • [6] Downscaling from GC precipitation: A benchmark for dynamical and statistical downscaling methods
    Schmidli, J
    Frei, C
    Vidale, PL
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2006, 26 (05) : 679 - 689
  • [7] A comparison of statistical and dynamical downscaling for surface temperature in North America
    Spak, Scott
    Holloway, Tracey
    Lynn, Barry
    Goldberg, Richard
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D8)
  • [8] Evaluation of WRF Parameterizations for Dynamical Downscaling in the Canary Islands
    Perez, J. C.
    Diaz, J. P.
    Gonzalez, A.
    Exposito, J.
    Rivera-Lopez, F.
    Taima, D.
    JOURNAL OF CLIMATE, 2014, 27 (14) : 5611 - 5631
  • [9] Evaluation of a WRF dynamical downscaling simulation over California
    Peter Caldwell
    Hung-Neng S. Chin
    David C. Bader
    Govindasamy Bala
    Climatic Change, 2009, 95 : 499 - 521
  • [10] Evaluation of a WRF dynamical downscaling simulation over California
    Caldwell, Peter
    Chin, Hung-Neng S.
    Bader, David C.
    Bala, Govindasamy
    CLIMATIC CHANGE, 2009, 95 (3-4) : 499 - 521