Dyadic sets, maximal functions and applications on ax plus b-groups

被引:4
|
作者
Liu, Liguang [1 ]
Vallarino, Maria [2 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
基金
中国国家自然科学基金;
关键词
Exponential growth group; Dyadic set; Complex interpolation; Hardy space; BMO; SINGULAR-INTEGRALS; WAVE-EQUATION; SPACES; MULTIPLIERS; H-1; BOUNDEDNESS; EXTENSIONS; LAPLACIAN; OPERATORS; BMO;
D O I
10.1007/s00209-010-0809-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be the Lie group R-n X R by dilations, endowed with the left-invariant Riemannian symmetric space structure and the right Haar measure rho, which is a Lie group of exponential growth. Hebisch and Steger in [Math. Z. 245: 37-61, 2003] proved that any integrable function on (S, rho) admits a Caldern-Zygmund decomposition which involves a particular family of sets, called Caldern-Zygmund sets. In this paper, we show the existence of a dyadic grid in the group S, which has nice properties similar to the classical Euclidean dyadic cubes. Using the properties of the dyadic grid, we prove a Fefferman-Stein type inequality, involving the dyadic Hardy-Littlewood maximal function and the dyadic sharp function. As a consequence, we obtain a complex interpolation theorem involving the Hardy space H (1) and the space BMO introduced in [Collect. Math. 60: 277-295, 2009].
引用
收藏
页码:515 / 529
页数:15
相关论文
共 13 条
  • [1] Dyadic sets, maximal functions and applications on ax + b-groups
    Liguang Liu
    Maria Vallarino
    Dachun Yang
    Mathematische Zeitschrift, 2012, 270 : 515 - 529
  • [2] Equivalent Characterizations for Boundedness of Maximal Singular Integrals on ax plus b-Groups
    Liu, Liguang
    Vallarino, Maria
    Yang, Dachun
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (06) : 1256 - 1291
  • [3] Spaces H1 and BMO on ax plus b-groups
    Vallarino, Maria
    COLLECTANEA MATHEMATICA, 2009, 60 (03) : 277 - 295
  • [4] Norms of certain functions of a distinguished Laplacian on the ax plus b groups
    Akylzhanov, Rauan
    Kuznetsova, Yulia
    Ruzhansky, Michael
    Zhang, Haonan
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (04) : 2327 - 2352
  • [5] Riesz Transforms on ax plus b Groups
    Martini, Alessio
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [6] The C*-algebra of ax plus b-like groups
    Lin, Ying-Fen
    Ludwig, Jean
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (01) : 104 - 130
  • [7] Equivalent Characterizations for Boundedness of Maximal Singular Integrals on ax+b-Groups
    Liguang Liu
    Maria Vallarino
    Dachun Yang
    Journal of Fourier Analysis and Applications, 2011, 17 : 1256 - 1291
  • [8] Hypergeometric functions and algebraic curves ye = xd + ax plus b
    Kewat, Pramod Kumar
    Kumar, Ram
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2019, 34 (03) : 325 - 342
  • [9] The Hausdorff-Young theorem for the matricial groups Gnm = ax plus b
    Nasserddine, Wassim
    ARCHIV DER MATHEMATIK, 2006, 87 (06) : 578 - 590
  • [10] An isomorphism between group C*-algebras of ax plus b-like groups
    Lin, Ying-Fen
    Ludwig, Jean
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 257 - 267