A Lightweight Remote Sensing Image Super-Resolution Method and Its Application in Smart Cities

被引:3
|
作者
Zhang, Nenghuan [1 ,2 ]
Wang, Yongbin [1 ,2 ]
Feng, Shuang [1 ,2 ,3 ]
机构
[1] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
[2] Commun Univ China, Key Lab Convergent Media & Intelligent Technol, Minist Educ, Beijing 100024, Peoples R China
[3] Commun Univ China, Sch Comp & Cyber Sci, Beijing 100024, Peoples R China
关键词
smart cities; remote sensing image; super-resolution technique; urban region function recognition; CITY;
D O I
10.3390/electronics11071050
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the growth of urban population, a series of urban problems have emerged, and how to speed up smart city construction has received extensive attention. Remote sensing images have the advantages of wide spatial coverage and rich information, and it is suitable for use as research data for smart cities. However, due to limitations in the imaging sensor conditions and complex weather, remote sensing images face the problems of insufficient resolution and cloud occlusion, which cannot meet the resolution requirements of smart city tasks. The remote sensing image super-resolution (SR) technique can improve the details and texture information without upgrading the imaging sensor system, which becomes a feasible solution for the above problems. In this paper, we propose a novel remote sensing image super-resolution method which leverages the texture features from internal and external references to help with SR reconstruction. We introduce the transformer attention mechanism to select and extract parts of texture features with high reference values to ensure that the network is lightweight, effective, and easier to deploy on edge computing devices. In addition, our network can automatically learn and adjust the alignment angles and scales of texture features for better SR results. Extensive comparison experiments show that our proposed method achieves superior performance compared with several state-of-the-art SR methods. In addition, we also evaluate the application value of our proposed SR method in urban region function recognition in smart cities. The dataset used in this task is low-quality. The comparative experiment between the original dataset and the SR dataset generated by our proposed SR method indicates that our method can effectively improve the recognition accuracy.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] MambaFormerSR: A Lightweight Model for Remote-Sensing Image Super-Resolution
    Zhi, Ruicong
    Fan, Xiaopei
    Shi, Jingye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [2] Lightweight Mars remote sensing image super-resolution reconstruction network
    Geng M.
    Wu F.
    Wang D.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (12): : 1487 - 1498
  • [3] Single Image Super-Resolution with Application to Remote-Sensing Image
    Deeba, Farah
    Dharejo, Fayaz Ali
    Zhou, Yuanchun
    Ghaffar, Abdul
    Memon, Mujahid Hussain
    Kun, She
    2020 GLOBAL CONFERENCE ON WIRELESS AND OPTICAL TECHNOLOGIES (GCWOT), 2020,
  • [4] A Super-resolution Method of Remote Sensing Image Using Transformers
    Ye, Chongjun
    Yan, Lingyu
    Zhang, Yucheng
    Zhan, Jun
    Yang, Jie
    Wang, Junfang
    PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS: TECHNOLOGY AND APPLICATIONS (IDAACS'2021), VOL 2, 2021, : 905 - 910
  • [5] Contextual Transformation Network for Lightweight Remote-Sensing Image Super-Resolution
    Wang, Shunzhou
    Zhou, Tianfei
    Lu, Yao
    Di, Huijun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Efficient Remote Sensing Image Super-Resolution via Lightweight Diffusion Models
    An, Tai
    Xue, Bin
    Huo, Chunlei
    Xiang, Shiming
    Pan, Chunhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [7] Design of lightweight re-parameterized remote sensing image super-resolution network
    Yi J.
    Chen J.
    Cao F.
    Li J.
    Xie W.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, (02): : 268 - 285
  • [8] FeNet: Feature Enhancement Network for Lightweight Remote-Sensing Image Super-Resolution
    Wang, Zheyuan
    Li, Liangliang
    Xue, Yuan
    Jiang, Chenchen
    Wang, Jiawen
    Sun, Kaipeng
    Ma, Hongbing
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [9] FeNet: Feature Enhancement Network for Lightweight Remote-Sensing Image Super-Resolution
    Wang, Zheyuan
    Li, Liangliang
    Xue, Yuan
    Jiang, Chenchen
    Wang, Jiawen
    Sun, Kaipeng
    Ma, Hongbing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Context-aware lightweight remote-sensing image super-resolution network
    Peng, Guangwen
    Xie, Minghong
    Fang, Liuyang
    FRONTIERS IN NEUROROBOTICS, 2023, 17