Implementation of a Wavefront coded microscope by the use of a spatial light modulator

被引:0
|
作者
Ortega-Sanchez, K. [1 ]
Toxqui-Quitl, C. [1 ]
Padilla-Vivanco, A. [1 ]
机构
[1] Univ Politecn Tulancingo, Ingn 100, Tulancingo 43629, Hidalgo, Mexico
关键词
Wavefront Coding; Phase Mask; Microscope system; LC-SLM; EXTENDED DEPTH; FIELD;
D O I
10.1117/12.2321991
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Wavefront Coding (WFC) technique is typically used to compensate for optical aberrations related to defocus. An advantage of WFC are that the depth of field (DOF) will be increased and the weight and size of an optical system are reduced. In this work a WFC system is analyzed to extend the DOF of the microscope objective. The Point Spread Function (PSF) is used to modify in such a way that it is invariant to defocus in a range of axial distances. A liquid crystal display light modulator (LC SLM) in a 4f imaging system is used for the implementation of the phase masks (PM). LC SLM screens modulate both the amplitude and the phase of the input beam. This display allows a flexible implementation of different profiles of phase masks that are generated from different families of functions, this is because the parameters can be dynamically modified. In this document, we propose an experimental setup for extended DOF in optical microscopy. Experimental results are presented using a LC - SLM.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Implementation of a wavefront coded imaging system using a spatial light modulator
    Carles, Guillem
    Muyo, Gonzalo
    Bosch, Salvador
    Harvey, Andrew R.
    OPTICAL DESIGN AND ENGINEERING III, PTS 1 AND 2, 2008, 7100
  • [2] Use of a spatial light modulator as an adaptable phase mask for wavefront coding
    Carles, G.
    Muyo, G.
    Bosch, S.
    Harvey, A. R.
    JOURNAL OF MODERN OPTICS, 2010, 57 (10) : 893 - 900
  • [3] White light wavefront control with a spatial light modulator
    Spangenberg, Dirk-Mathys
    Dudley, Angela
    Neethling, Pieter H.
    Rohwer, Erich G.
    Forbes, Andrew
    OPTICS EXPRESS, 2014, 22 (11): : 13870 - 13879
  • [4] Wavefront Simulation and Wavefront Correction of Liquid Crystal Spatial Light Modulator
    Ke Xizheng
    Han Kena
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (05)
  • [5] Wavefront-based spatial light modulator alignment
    Arines, Justo
    Garcia, Ana
    OPTICAL ENGINEERING, 2020, 59 (04)
  • [6] Reference wavefront reconstruction based on spatial light modulator
    Nie Liang
    Hu Mengmeng
    Guo Rongli
    Lu Shaojun
    HOLOGRAPHY, DIFFRACTIVE OPTICS, AND APPLICATIONS IV, 2010, 7848
  • [7] Impact of spatial light modulator pixel structure on wavefront reconstruction
    Xiao Z.-X.
    Wen J.-P.
    Zhao Z.-X.
    Fan C.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2020, 28 (10): : 2151 - 2157
  • [8] Wavefront modulation with spatial light modulator for Fourier ptychographic microscopy
    Zhang, Jinlei
    Tao, Xiao
    Xie, Qin
    Sun, Yan
    Zheng, Zhenrong
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY VIII, 2021, 11897
  • [9] Diffractive wavefront control with programmable spatial light modulator technology
    Gruneisen, Mark T.
    Dymale, Raymond C.
    Rotge, James R.
    Garvin, Matthew B.
    ADVANCED WAVEFRONT CONTROL: METHODS, DEVICES, AND APPLICATIONS IV, 2006, 6306
  • [10] Holographic wavefront sensing with spatial light modulator in context of horizontal light propagation
    Zepp, A.
    OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS XV, 2012, 8535