Transcriptomic basis of genome by genome variation in a legume-rhizobia mutualism

被引:36
|
作者
Burghardt, Liana T. [1 ]
Guhlin, Joseph [1 ]
Chun, Chan Lan [2 ,5 ,6 ]
Liu, Junqi [3 ]
Sadowsky, Michael J. [2 ]
Stupar, Robert M. [3 ]
Young, Nevin D. [1 ,4 ]
Tiffin, Peter [1 ]
机构
[1] Univ Minnesota, Dept Plant & Microbial Biol, St Paul, MN 55108 USA
[2] Univ Minnesota, Biotechnol Inst, St Paul, MN 55108 USA
[3] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA
[4] Univ Minnesota, Dept Plant Pathol, St Paul, MN 55108 USA
[5] Univ Minnesota, Nat Resources Res Inst, Duluth, MN 55811 USA
[6] Univ Minnesota, Dept Civil Engn, Duluth, MN 55811 USA
基金
美国国家科学基金会;
关键词
Ensifer (Sinorhizobium); genome x genome interaction; Medicago truncatula; nitrogen fixation; Nodule Cysteine-Rich peptides; transcriptome plasticity; MEDICAGO-TRUNCATULA; MODEL LEGUME; NITROGEN-FIXATION; GENE-EXPRESSION; SYMBIOTIC RHIZOBIA; FLUX CONTROL; EVOLUTION; PLANT; INSIGHTS; PATHWAY;
D O I
10.1111/mec.14285
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the legume-rhizobia mutualism, the benefit each partner derives from the other depends on the genetic identity of both host and rhizobial symbiont. To gain insight into the extent of genome 9 genome interactions on hosts at the molecular level and to identify potential mechanisms responsible for the variation, we examined host gene expression within nodules (the plant organ where the symbiosis occurs) of four genotypes of Medicago truncatula grown with either Ensifer meliloti or E. medicae symbionts. These host 9 symbiont combinations show significant variation in nodule and biomass phenotypes. Likewise, combinations differ in their transcriptomes: host, symbiont and host 9 symbiont affected the expression of 70%, 27% and 21%, respectively, of the approximately 27,000 host genes expressed in nodules. Genes with the highest levels of expression often varied between hosts and/or symbiont strain and include leghemoglobins that modulate oxygen availability and hundreds of Nodule Cysteine-Rich (NCR) peptides involved in symbiont differentiation and viability in nodules. Genes with host 9 symbiont-dependent expression were enriched for functions related to resource exchange between partners (sulphate/iron/amino acid transport and dicarboxylate/amino acid synthesis). These enrichments suggest mechanisms for host control of the currencies of the mutualism. The transcriptome of M. truncatula accession HM101 (A17), the reference genome used for most molecular research, was less affected by symbiont identity than the other hosts. These findings underscore the importance of assessing the molecular basis of variation in ecologically important traits, particularly those involved in biotic interactions, in multiple genetic contexts.
引用
收藏
页码:6122 / 6135
页数:14
相关论文
共 50 条
  • [1] A window into the transcriptomic basis of genotype-by-genotype interactions in the legume-rhizobia mutualism
    Wood, Corlett W.
    Stinchcombe, John R.
    MOLECULAR ECOLOGY, 2017, 26 (21) : 5869 - 5871
  • [2] Ecological consequences of urbanization on a legume-rhizobia mutualism
    Murray-Stoker, David
    Johnson, Marc T. J.
    OIKOS, 2021, 130 (10) : 1750 - 1761
  • [3] Genotypic variation in resource exchange, use, and production traits in the legume-rhizobia mutualism
    Calvert, McCall B.
    Hoque, Maliha
    Wood, Corlett W.
    ECOLOGY AND EVOLUTION, 2024, 14 (11):
  • [4] A window into the transcriptomic basis of genotype-by-genotype interactions in the legume-rhizobia mutualism (vol 26, pg 5869, 2017)
    Wood, Corlett W.
    Stinchcombe, John R.
    MOLECULAR ECOLOGY, 2019, 28 (13) : 3285 - 3285
  • [5] Evolutionary signals of symbiotic persistence in the legume-rhizobia mutualism
    Werner, Gijsbert D. A.
    Cornwell, William K.
    Cornelissen, Johannes H. C.
    Kiers, E. Toby
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (33) : 10262 - 10269
  • [6] The direct effects of plant polyploidy on the legume-rhizobia mutualism
    Forrester, Nicole J.
    Ashman, Tia-Lynn
    ANNALS OF BOTANY, 2018, 121 (02) : 209 - 220
  • [7] Direct and interactive effects of light and nutrients on the legume-rhizobia mutualism
    Lau, Jennifer A.
    Bowling, Evan James
    Gentry, Lowell E.
    Glasser, Paul A.
    Monarch, Elizabeth A.
    Olesen, Whitney M.
    Waxmonsky, Jillian
    Young, Ryan Thomas
    ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY, 2012, 39 : 80 - 86
  • [8] Genetic conflict with a parasitic nematode disrupts the legume-rhizobia mutualism
    Wood, Corlett W.
    Pilkington, Bonnie L.
    Vaidya, Priya
    Biel, Caroline
    Stinchcombel, John R.
    EVOLUTION LETTERS, 2018, 2 (03) : 233 - 245
  • [9] The Potential for Genotype-by-Environment Interactions to Maintain Genetic Variation in a Model Legume-Rhizobia Mutualism
    Vaidya, Priya
    Stinchcombe, John R.
    PLANT COMMUNICATIONS, 2020, 1 (06)
  • [10] Genetic basis of symbiosis specificity in legume-rhizobia interactions
    Zhu, H.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2024, 37 (05) : 129 - 129