ON SOME SUBCLASSES OF HARMONIC MAPPINGS

被引:6
|
作者
Ghosh, Nirupam [1 ]
Allu, Vasudevarao [2 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, Odisha, India
关键词
analytic; univalent; starlike; convex; close-to-convex; harmonic mapping; convolution; right half-plane mapping; UNIVALENT; CONVEX;
D O I
10.1017/S0004972719000698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P0 H ( M) denote the class of normalised harmonic mappings f = h + g in the unit disk D satisfying Re (zh00(z)) > M + jzg00(z) j, where h0 (0) 1 = 0 = g0(0) and M > 0. Let B0 H (M) denote the class of sense-preserving harmonic mappings f = h + g in the unit disk D satisfying jzh00 (z) j M jzg00 (z) j, where M > 0. We discuss the coe fficient bound problem, the growth theorem for functions in the class P0 H (M) and a two-point distortion property for functions in the class B-H(0) (M).
引用
收藏
页码:130 / 140
页数:11
相关论文
共 50 条
  • [1] Subclasses of harmonic mappings defined by convolution
    Ali, Rosihan M.
    Stephen, B. Adolf
    Subramanian, K. G.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (10) : 1243 - 1247
  • [2] Subclasses of Harmonic Mappings Defined by Convolution
    Joshi, Santosh B.
    Shelake, Girish D.
    JOURNAL OF COMPLEX ANALYSIS, 2013,
  • [3] CONSTRUCTION OF SUBCLASSES OF UNIVALENT HARMONIC MAPPINGS
    Nagpal, Sumit
    Ravichandran, V.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (03) : 567 - 592
  • [4] Subclasses of Multivalent Harmonic Mappings Defined by Convolution
    Subramanian, K. G.
    Stephen, B. Adolf
    Lee, S. K.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (03) : 717 - 726
  • [5] On subclasses of harmonic mappings involving Frasin operator
    Muhammad G. Khan
    Bakhtiar Ahmad
    Zabidin Salleh
    Iing Lukman
    Afrika Matematika, 2021, 32 : 1159 - 1171
  • [6] On subclasses of harmonic mappings involving Frasin operator
    Khan, Muhammad G.
    Ahmad, Bakhtiar
    Salleh, Zabidin
    Lukman, Iing
    AFRIKA MATEMATIKA, 2021, 32 (7-8) : 1159 - 1171
  • [7] Bohr phenomenon for certain subclasses of harmonic mappings
    Allu, Vasudevarao
    Halder, Himadri
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 173
  • [8] ON CERTAIN SUBCLASSES OF UNIVALENT p-HARMONIC MAPPINGS
    Qiao, J.
    Chen, J.
    Shi, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (02) : 429 - 451
  • [9] Geometric properties and sections for certain subclasses of harmonic mappings
    Liu, Ming-Sheng
    Yang, Li-Mei
    MONATSHEFTE FUR MATHEMATIK, 2019, 190 (02): : 353 - 387
  • [10] Geometric properties and sections for certain subclasses of harmonic mappings
    Ming-Sheng Liu
    Li-Mei Yang
    Monatshefte für Mathematik, 2019, 190 : 353 - 387