Computable metrization

被引:18
|
作者
Grubba, Tanja
Schroeder, Matthias
Weihrauch, Klaus [1 ]
机构
[1] Univ Hagen, Dept Math & Comp Sci, D-58084 Hagen, Germany
[2] Univ Siegen, Dept Math, D-57068 Siegen, Germany
关键词
computable Analysis; TTE; computable metrization; computable embedding; computable metric space;
D O I
10.1002/malq.200710009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every second-countable regular topological space X is metrizable. For a given "computable" topological space satisfying an axiom of computable regularity M. Schroder [10] has constructed a computable metric. In this article we study whether this metric space (X, d) can be considered computationally as a subspace of some computable metric space [15]. While Schroder's construction is "pointless", i.e., only sets of a countable base but no concrete points are known, for a computable metric space a concrete dense set of computable points is needed. But there may be no computable points in X. By converging sequences of basis sets instead of Cauchy sequences of points we construct a metric completion ((X) over tilde, (d) over tilde) of a space (X, d) together with a canonical representation. We show that there is a computable embedding of (X, d) in ((X) over tilde, (d) over tilde) with computable inverse. Finally, we construct a notation of a dense set of points in ((X) over tilde, (d) over tilde) with computable mutual distances and prove that the Cauchy representation of the resulting computable metric space is equivalent to. Therefore, every computably regular space has a computable homeomorphic embedding in a computable metric space, which topologically is its completion. By the way we prove a computable Urysohn lemma. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:381 / 395
页数:15
相关论文
共 50 条
  • [1] On Computable Metrization
    Grubba, Tanja
    Weihrauch, Klaus
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2007, 167 : 345 - 364
  • [2] METRIZATION
    JONES, FB
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (06): : 571 - &
  • [3] METRIZATION THEOREM
    ALEXANDE.CC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (05): : 786 - &
  • [4] Channel metrization
    D'Oliveira, Rafael G. L.
    Firer, Marcelo
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 80 : 107 - 119
  • [5] METRIZATION THEOREM
    ZENOR, P
    COLLOQUIUM MATHEMATICUM, 1973, 27 (02) : 241 - 243
  • [6] EXPLICIT METRIZATION
    SHORE, SD
    SAWYER, LJ
    PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS, 1993, 704 : 328 - 336
  • [7] A NOTE ON METRIZATION
    HALL, DW
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (11) : 1083 - 1083
  • [8] METRIZATION THEOREM
    ZENOR, PL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A204 - &
  • [9] Metrization and manifolds
    Mohamad, AM
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 61 (02) : 351 - 352
  • [10] A NOTE ON METRIZATION
    HIGGINS, SB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 144 - &