Pinpointing optimized air quality model performance over the Beijing-Tianjin-Hebei region: Mosaic approach

被引:6
|
作者
Wang, Kun [1 ,2 ]
Tong, Yali [1 ,2 ]
Gao, Jiajia [1 ]
Zhang, Xiaoxi [1 ]
Zuo, Penglai [1 ]
Wang, Chenlong [1 ]
Wu, Kai [3 ]
Yang, Siyuan [4 ]
机构
[1] Beijing Municipal Inst Labour Protect, Dept Air Pollut Control, Beijing 100054, Peoples R China
[2] Ocean Univ China, Minist Educ, Key Lab Marine Environm Sci & Ecol, Qingdao 266100, Peoples R China
[3] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
[4] Beijing Inst Metrol, Beijing 100012, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Land surface model; Mosaic approach; PM2.5; WRF-CMAQ; LAND-SURFACE HETEROGENEITY; URBAN CANOPY MODEL; PART I; IMPACT; WIND; HAZE; IMPLEMENTATION; SIMULATION; POLLUTION; SCHEMES;
D O I
10.1016/j.apr.2021.101207
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mosaic approach, with certain number of tiles representing land use (LU) types in each grid cell, had been implemented into WRF-Noah model. Previous studies found mosaic approach had a better performance on meteorological parameters than only considering dominant LU in dominant approach. In this study, the impacts of mosaic approach on meteorological parameters and air quality were investigated in WRF-CMAQ over Beijing-Tianjin-Hebei (BTH) region in China in 2020. Results showed that mosaic approach improved the simulation results of WS10 (surface wind speed at 10 m), T2 (temperature at 2 m), and RH (relative humidity) especially in nighttime in winter and were available for all stations with different percent of urban area. "MOS_TOPO" scenario, which coupled with mosaic approach and "topo-wind" schemes, obtained best simulation results of WS10 and T2 in January among six scenarios, with the lower average Root Mean Square Error of WS10 (1.18 m/s) and Mean Bias of T2 (0.55 degrees C) for all stations. Meanwhile, mosaic approach obtained lower vertical bar NMB vertical bar of PM2.5 than dominant approach in more than 69% cities in BTH region. Cities in southern Hebei province, especially Xingtai city, were identified as the most sensitive area for PM2.5 simulation affected by mosaic approach. Although the mosaic approach has improved the simulation results of meteorological parameters, especially the nighttime simulation results of WS10, there is still some deviation in the simulation results of PM2.5. Accurate emission inventory, suitable physics option in numerical weather model and rational chemical mechanism in air quality model are the important factors for WRF-CMAQ.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Prediction of air quality indicators for the Beijing-Tianjin-Hebei region
    Wu, Lifeng
    Li, Nu
    Yang, Yingjie
    JOURNAL OF CLEANER PRODUCTION, 2018, 196 : 682 - 687
  • [2] The Beijing-Tianjin-Hebei Region's Analysis of Air Quality Assessment
    Sun, Xiaohui
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ELECTRONIC, MECHANICAL, INFORMATION AND MANAGEMENT SOCIETY (EMIM), 2016, 40 : 730 - 734
  • [3] Beijing-Tianjin-Hebei Region Air Pollution Analysis
    Yang, Weichen
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON ENVIRONMENT, MATERIALS, CHEMISTRY AND POWER ELECTRONICS, 2016, 84 : 363 - 366
  • [4] The Benefits of the Clean Heating Plan on Air Quality in the Beijing-Tianjin-Hebei Region
    Wang, Peng
    Wang, Min
    Zhou, Mi
    He, Jianjun
    Feng, Xiangzhao
    Du, Xiaolin
    Wang, Yu
    Wang, Yongli
    ATMOSPHERE, 2022, 13 (04)
  • [5] Collaborative control of air pollution in the Beijing-Tianjin-Hebei region
    Meng, Changsheng
    Tang, Quan
    Yang, Zhenhua
    Cheng, Haiyan
    Li, Zhigang
    Li, Kailin
    ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2021, 23
  • [6] Research on Air Quality of Beijing-Tianjin-Hebei Region based on SVM and Regression Analysis
    Tang, Li
    Zhou, Caiyun
    He, Li
    Zhang, Shuhua
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON EDUCATION, ECONOMICS AND MANAGEMENT RESEARCH (ICEEMR 2017), 2017, 95 : 327 - 330
  • [7] Study on the Inventory of Air Pollutants in Ports of Beijing-Tianjin-Hebei Region
    Zhang, Fan
    2019 INTERNATIONAL CONFERENCE ON ADVANCES IN CIVIL ENGINEERING, ENERGY RESOURCES AND ENVIRONMENT ENGINEERING, 2019, 330
  • [8] Is there a Kuznets Curve for Air Pollution and Economic Growth in Beijing-Tianjin-Hebei Region?
    Zhang Xuefeng
    Yan Mengyin
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON EDUCATION, ECONOMICS AND MANAGEMENT RESEARCH (ICEEMR 2017), 2017, 95 : 420 - 423
  • [9] Study on Environmental Equity in Beijing-Tianjin-Hebei Region
    Li, Cui
    2020 5TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND ENVIRONMENTAL PROTECTION, 2020, 621
  • [10] Air pollution effect of the thermal power plants in Beijing-Tianjin-Hebei region
    The Appraisal Center for Environment and Engineering, The State Environmental Protection Ministry, Beijing
    100012, China
    不详
    100012, China
    不详
    310012, China
    不详
    100084, China
    不详
    100012, China
    Zhongguo Huanjing Kexue, 2 (364-373): : 364 - 373