A new operational approach for solving fractional variational problems depending on indefinite integrals

被引:28
|
作者
Ezz-Eldien, S. S. [1 ]
Doha, E. H. [2 ]
Bhrawy, A. H. [3 ]
El-Kalaawy, A. A. [3 ]
Machado, J. A. T. [4 ]
机构
[1] Assiut Univ, Fac Sci, Dept Math, New Valley Branch, El Kharja 72511, Egypt
[2] Cairo Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
[4] Polytech Porto, Inst Engn, Dept Elect Engn, Rua Dr Antonio Bernardino de Almeida, Oporto, Portugal
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2018年 / 57卷
关键词
Riemann-Liouville integrals; Caputo derivatives; Lagrange multipliers method; Chebyshev polynomials; Operational matrix; Fractional variational problems; EULER-LAGRANGE EQUATIONS; CONSERVATION-LAWS; CALCULUS; MATRIX; TERMS;
D O I
10.1016/j.cnsns.2017.08.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:246 / 263
页数:18
相关论文
共 50 条