Interpolating sequences in mean

被引:1
|
作者
Tugores, Francesc [1 ]
机构
[1] Univ Vigo, Dept Math, Orense 32004, Spain
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2018年 / 29卷 / 05期
关键词
Interpolating sequence; Uniformly separated sequence; Bounded holomorphic function; Lipschitz class; ANALYTIC-FUNCTIONS;
D O I
10.1016/j.indag.2018.06.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with interpolating sequences (z(n))(n) for two spaces of holomorphic functions f in the unit disk D in C: those that are bounded and those that satisfy a Lipschitz condition vertical bar f(z) - f(w)vertical bar <= c vertical bar z - w vertical bar(alpha), 0 < alpha <= 1. Given a sequence of values (w(n))(n) in a certain target space, we look for a function f interpolating 'in mean", that is, with (f(z(1)) + ... + f(z(n)))/n = w(n), n >= 1. We obtain target spaces when we prescribe that the corresponding interpolating sequences be the uniformly separated ones or the union of two uniformly separated ones. (C) 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1326 / 1333
页数:8
相关论文
共 50 条
  • [1] INTERPOLATING SEQUENCES
    SARROSTE, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (26): : 1905 - &
  • [2] On interpolation of interpolating sequences
    Amar, Eric
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2007, 18 (02): : 177 - 187
  • [3] Recursive interpolating sequences
    Tugores, Francesc
    OPEN MATHEMATICS, 2018, 16 : 461 - 468
  • [4] Thin Interpolating Sequences
    Gorkin, Pamela
    Wick, Brett D.
    RECENT PROGRESS ON OPERATOR THEORY AND APPROXIMATION IN SPACES OF ANALYTIC FUNCTIONS, 2016, 679 : 129 - 145
  • [5] Computing Interpolating Sequences
    Valentin V. Andreev
    Timothy H. McNicholl
    Theory of Computing Systems, 2010, 46 : 340 - 350
  • [6] HARMONIC INTERPOLATING SEQUENCES
    AMAR, E
    JOURNAL D ANALYSE MATHEMATIQUE, 1977, 32 : 197 - 211
  • [7] INTERPOLATING SEQUENCES FOR A∞(φ)-FUNCTIONS
    肖杰
    Science China Mathematics, 1992, (08) : 907 - 916
  • [8] Interpolating sequences on the bidisk
    Agler, J
    McCarthy, JE
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (09) : 1103 - 1114
  • [9] INTERPOLATING SEQUENCES IN POLYDISKS
    KRONSTADT, EP
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 199 (NOV) : 369 - 398
  • [10] Computing Interpolating Sequences
    Andreev, Valentin V.
    McNicholl, Timothy H.
    THEORY OF COMPUTING SYSTEMS, 2010, 46 (02) : 340 - 350