A one-dimensional flow problem in porous media with hydrophile grains

被引:0
|
作者
Fasano, A [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
关键词
D O I
10.1002/(SICI)1099-1476(19990510)22:7<605::AID-MMA55>3.0.CO;2-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a free boundary problem describing the propagation of the wetting front following the injection of a liquid into a porous medium with hydrophile granules. The absorption process produces a non-local interaction with the flow so that the porosity appearing in the parabolic equation for pressure is a functional of saturation and of the free boundary. Our analysis is confined to the unsaturated regime, which is the first stage of the process. An existence theorem is proved. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:605 / 617
页数:13
相关论文
共 50 条
  • [1] Inverse problem for one-dimensional subsurface flow in unsaturated porous media
    Lehmann, F
    Ackerer, P
    COMPUTATIONAL METHODS IN WATER RESOURCES XI, VOL 1: COMPUTATIONAL METHODS IN SUBSURFACE FLOW AND TRANSPORT PROBLEMS, 1996, : 551 - 558
  • [2] One-dimensional unstable flow of fluid in deformable porous media
    Xu, Zenghe
    Xu, Xiaohe
    Ying Yong Li Xue Xue Bao/Chinese Journal of Applied Mechanics, 1999, 16 (04): : 46 - 51
  • [3] A posteriori error estimate for a one-dimensional pollution problem in porous media
    Aboulaich, Rajaa
    Achchab, Boujemaa
    Darouichi, Aziz
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (19-20) : 1217 - 1222
  • [4] UNSTEADY FLOW OF GAS THROUGH POROUS MEDIA - ONE-DIMENSIONAL CASE
    ARONOFSKY, JS
    JENKINS, R
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1951, 18 (03): : 325 - 326
  • [5] Analytical approximations for flow in compressible, saturated, one-dimensional porous media
    Barry, D. A.
    Lockington, D. A.
    Jeng, D. -S.
    Parlange, J. -Y.
    Li, L.
    Stagnitti, F.
    ADVANCES IN WATER RESOURCES, 2007, 30 (04) : 927 - 936
  • [6] Shock Propagation in a One-Dimensional Flow Through Deformable Porous Media
    E. Comparini
    M. Ughi
    Meccanica, 2000, 35 : 119 - 132
  • [7] Shock propagation in a one-dimensional flow through deformable porous media
    Comparini, E
    Ughi, M
    MECCANICA, 2000, 35 (02) : 119 - 132
  • [8] Diffusion in one-dimensional multifractal porous media
    Lovejoy, S
    Schertzer, D
    Silas, P
    WATER RESOURCES RESEARCH, 1998, 34 (12) : 3283 - 3291
  • [9] Homogenization of a one-dimensional model for compressible miscible flow in porous media.
    Choquet, C
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (02): : 399 - 414