Ultralocal Lax connection for para-complex ZT-cosets

被引:9
|
作者
Delduc, F. [1 ]
Kameyama, T. [2 ]
Lacroix, S. [3 ,4 ]
Magro, M. [1 ]
Vicedo, B. [5 ]
机构
[1] Univ Lyon, Ens Lyon, Univ Claude Bernard, CNRS,Lab Phys, F-69342 Lyon, France
[2] 2-10-3 Shimonikura, Wako, Saitama 3510111, Japan
[3] Univ Hamburg, Inst Theoret Phys 2, Luruper Chaussee 149, D-22761 Hamburg, Germany
[4] Univ Hamburg, Zentrum Math Phys, Bundesstr 55, D-20146 Hamburg, Germany
[5] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
关键词
INVERSE SCATTERING METHOD; SIGMA-MODELS; YANGIAN SYMMETRY; ALGEBRAS; CHARGE; GRADINGS;
D O I
10.1016/j.nuclphysb.2019.114821
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider sigma-models on para-complex Z(T)-cosets, which are analogues of those on complex homogeneous target spaces considered recently by D. Bykov. For these models, we show the existence of a gauge-invariant Lax connection whose Poisson brackets are ultralocal. Furthermore, its light-cone components commute with one another in the sense of Poisson brackets. This extends a result of O. Brodbeck and M. Zagermann obtained twenty years ago for hermitian symmetric spaces. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页数:14
相关论文
共 21 条