Vertex colorings with a distance restriction

被引:9
|
作者
Chen, GT
Gyarfas, A
Schelp, RH
机构
[1] Georgia State Univ, Dept Math & Comp Sci, Atlanta, GA 30303 USA
[2] Hungarian Acad Sci, Comp & Automat Res Inst, H-1111 Budapest, Hungary
[3] Memphis State Univ, Dept Math Sci, Memphis, TN 38152 USA
基金
匈牙利科学研究基金会; 美国国家科学基金会;
关键词
coloring; chromatic number; distance; extremal number;
D O I
10.1016/S0012-365X(98)00094-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d, k be any two positive integers with k>d>0. We consider a k-coloring of a graph G such that the distance between each pair of vertices in the same color-class is at least d. Such graphs are said to be (k, d)-colorable. The object of this paper is to determine the maximum size of (k, 3)-colorable, (k,4)-colorable, and (k, k-1)-colorable graphs. Sharp results are obtained for both (k, 3)-colorable and (k, k-1)-colorable graphs, while the results obtained for (k, 4)-colorable graphs are close to the truth. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:65 / 82
页数:18
相关论文
共 50 条
  • [1] VERTEX RAINBOW COLORINGS OF GRAPHS
    Fujie-Okamoto, Futaba
    Kolasinski, Kyle
    Lin, Jianwei
    Zhang, Ping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 63 - 80
  • [2] VERTEX COLORINGS WITHOUT ISOLATES
    MAURER, SB
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (03) : 294 - 319
  • [3] BOUNDED VERTEX COLORINGS OF GRAPHS
    HANSEN, P
    HERTZ, A
    KUPLINSKY, J
    DISCRETE MATHEMATICS, 1993, 111 (1-3) : 305 - 312
  • [4] Nonrepetitive vertex colorings of graphs
    Harant, Jochen
    Jendrol', Stanislav
    DISCRETE MATHEMATICS, 2012, 312 (02) : 374 - 380
  • [5] PARITY VERTEX COLORINGS OF BINOMIAL TREES
    Gregor, Petr
    Skrekovski, Riste
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 177 - 180
  • [6] Proper interval vertex colorings of graphs
    Madaras, Tomas
    Matisova, Daniela
    Onderko, Alfred
    Sarosiova, Zuzana
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 477
  • [7] A note on acyclic vertex-colorings
    Sereni, Jean-Sebastien
    Volec, Jan
    JOURNAL OF COMBINATORICS, 2016, 7 (04) : 725 - 737
  • [8] ON A THEOREM ABOUT VERTEX COLORINGS OF GRAPHS
    BERNARDI, C
    DISCRETE MATHEMATICS, 1987, 64 (01) : 95 - 96
  • [9] Set vertex colorings and joins of graphs
    Futaba Okamoto
    Craig W. Rasmussen
    Ping Zhang
    Czechoslovak Mathematical Journal, 2009, 59 : 929 - 941
  • [10] VERTEX COLORINGS WITHOUT RAINBOW SUBGRAPHS
    Goddard, Wayne
    Xu, Honghai
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (04) : 989 - 1005