Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression

被引:18
|
作者
Sprangers, Olivier [1 ,2 ]
Schelter, Sebastian [2 ]
de Rijke, Maarten [2 ]
机构
[1] AIRLab, Amsterdam, Netherlands
[2] Univ Amsterdam, Amsterdam, Netherlands
关键词
Probabilistic Regression; Gradient Boosting Machines;
D O I
10.1145/3447548.3467278
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gradient Boosting Machines (GBMs) are hugely popular for solving tabular data problems. However, practitioners are not only interested in point predictions, but also in probabilistic predictions in order to quantify the uncertainty of the predictions. Creating such probabilistic predictions is difficult with existing GBM-based solutions: they either require training multiple models or they become too computationally expensive to be useful for large-scale settings. We propose Probabilistic Gradient Boosting Machines (PGBMs), a method to create probabilistic predictions with a single ensemble of decision trees in a computationally efficient manner. PGBM approximates the leaf weights in a decision tree as a random variable, and approximates the mean and variance of each sample in a dataset via stochastic tree ensemble update equations. These learned moments allow us to subsequently sample from a specified distribution after training. We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods: (i) PGBM enables probabilistic estimates without compromising on point performance in a single model, (ii) PGBM learns probabilistic estimates via a single model only (and without requiring multi-parameter boosting), and thereby offers a speedup of up to several orders of magnitude over existing state-of-the-art methods on large datasets, and (iii) PGBM achieves accurate probabilistic estimates in tasks with complex differentiable loss functions, such as hierarchical time series problems, where we observed up to 10% improvement in point forecasting performance and up to 300% improvement in probabilistic forecasting performance.
引用
收藏
页码:1510 / 1520
页数:11
相关论文
共 50 条
  • [1] A Large-Scale Study of Probabilistic Calibration in Neural Network Regression
    Dheur, Victor
    Ben Taieb, Souhaib
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [2] Probabilistic gradient boosting machines for GEFCom2014 wind forecasting
    Landry, Mark
    Edinger, Thomas P.
    Patschke, David
    Varrichio, Craig
    INTERNATIONAL JOURNAL OF FORECASTING, 2016, 32 (03) : 1061 - 1066
  • [3] Probabilistic queries in large-scale networks
    Pedone, F
    Duarte, NL
    Goulart, M
    DEPENDABLE COMPUTING: EDCC-4, PROCEEDINGS, 2002, 2485 : 209 - 226
  • [4] Towards Large-Scale Probabilistic OBDA
    Schoenfisch, Joerg
    Stuckenschmidt, Heiner
    SCALABLE UNCERTAINTY MANAGEMENT (SUM 2015), 2015, 9310 : 106 - 120
  • [5] Mechanisms of probabilistic cueing in large-scale search
    Smith, A. D.
    Hood, B. M.
    Gilchrist, I. D.
    PERCEPTION, 2007, 36 (09) : 1402 - 1402
  • [6] Probabilistic Cuing in Large-Scale Environmental Search
    Smith, Alastair D.
    Hood, Bruce M.
    Gilchrist, Iain D.
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 2010, 36 (03) : 605 - 618
  • [7] Probabilistic reliable dissemination in large-scale systems
    Kermarrec, AM
    Massoulié, L
    Ganesh, AJ
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2003, 14 (03) : 248 - 258
  • [8] NON-PROBABILISTIC AGGREGATION OR PROBABILISTIC SAMPLING IN LARGE-SCALE PLANT LOCATION PROBLEMS
    HOLROYD, WM
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1974, 56 (05) : 1206 - 1206
  • [9] Probabilistic Belief Embedding for Large-Scale Knowledge Population
    Fan, Miao
    Zhou, Qiang
    Abel, Andrew
    Zheng, Thomas Fang
    Grishman, Ralph
    COGNITIVE COMPUTATION, 2016, 8 (06) : 1087 - 1102
  • [10] Large-scale probabilistic predictors with and without guarantees of validity
    Vovk, Vladimir
    Petej, Ivan
    Fedorova, Valentina
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28