Enhanced light oil recovery from tight formations through CO2 huff 'n' puff processes

被引:101
|
作者
Ma, Jinhua [1 ,2 ]
Wang, Xiangzeng [3 ]
Gao, Ruimin [3 ]
Zeng, Fanhua [1 ]
Huang, Chunxia [3 ]
Tontiwachwuthikul, Paitoon [1 ]
Liang, Zhiwu [4 ]
机构
[1] Univ Regina, Fac Engn & Appl Sci, Petr Syst Engn, Regina, SK S4S 0A2, Canada
[2] Shandong Jianzhu Univ, Jinan 250101, Shandong, Peoples R China
[3] Yanchang Petr Grp, Xian 710614, Shaanxi, Peoples R China
[4] Hunan Univ, Changsha 410013, Hunan, Peoples R China
关键词
CO2; injection; Huff 'n' puff; Tight formation; EOR; Light oil;
D O I
10.1016/j.fuel.2015.03.029
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The major objective of this paper was to evaluate the viability of CO2 huff 'n' puff processes as primary means to enhance oil recovery in low-pressure tight reservoirs and thereby optimize the corresponding key operating parameters of the process. In this study, CO2 huff 'n' puff corefloods were conducted by using a 973 mm-long composite core with an average porosity of 9.6% and an average permeability of 2.3 mD. The effects of primary parameters, such as slug size, injection rate, and the maximum and minimum pressures during production, chasing gas (N-2) and soaking time on the performance of the process were investigated and operating strategies were optimized to lead to successful field applications. The experimental results indicate that 0.1 reservoir pore volume (PV) seems to be an optimal slug size for the first cycle, with the cycle recovery factor (RF) up to 14.52% when reservoir pressure is depleted from the maximum pressure to 8 MPa. RF is suggested to be sensitive to the maximum pressure and therefore, a maximum pressure should be built up to as high as the formation can hold. In the subsequent cycles, injecting N-2 as a chasing gas flowing CO2 slug has great potential to significantly improve the cycle performance while reducing the CO2 utilization. The optimal operation should have three cycles and the ultimate RF for these three cycles could reach above 30%. The observations of this study suggest that the CO2 huff 'n' puff process is a viable technique to enhance light oil recovery in low-pressure tight reservoirs. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [1] Numerical Study on the Enhanced Oil Recovery by CO2 Huff-n-Puff in Shale Volatile Oil Formations
    Zheng, Aiwei
    Lu, Wentao
    Zhang, Rupeng
    Sun, Hai
    ENERGIES, 2024, 17 (19)
  • [2] Experimental study of enhanced oil recovery by CO2 huff-n-puff in shales and tight sandstones with fractures
    Chao-Fan Zhu
    Wei Guo
    You-Ping Wang
    Ya-Jun Li
    Hou-Jian Gong
    Long Xu
    Ming-Zhe Dong
    Petroleum Science, 2021, 18 (03) : 852 - 869
  • [3] Experimental study of enhanced oil recovery by CO2 huff-n-puff in shales and tight sandstones with fractures
    Zhu, Chao-Fan
    Guo, Wei
    Wang, You-Ping
    Li, Ya-Jun
    Gong, Hou-Jian
    Xu, Long
    Dong, Ming-Zhe
    PETROLEUM SCIENCE, 2021, 18 (03) : 852 - 869
  • [4] A critical review of the CO2 huff 'n' puff process for enhanced heavy oil recovery
    Zhou, Xiang
    Yuan, Qingwang
    Peng, Xiaolong
    Zeng, Fanhua
    Zhang, Liehui
    FUEL, 2018, 215 : 813 - 824
  • [5] Enhanced heavy oil recovery via surfactant-assisted CO2 huff-n-puff processes
    Li, Binfei
    Zhang, Qiliang
    Li, Songyan
    Li, Zhaomin
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 159 : 25 - 34
  • [6] Research on the Enhanced Oil Recovery Technique of Horizontal Well Volume Fracturing and CO2 Huff-n-Puff in Tight Oil Reservoirs
    Bai, Mingxing
    Zhang, Zhichao
    Chen, Qiaozhen
    Shao Weifeng
    Du, Siyu
    ACS OMEGA, 2021, 6 (43): : 28485 - 28495
  • [7] Experimental investigation of CO2 huff-n-puff process for enhancing oil recovery in tight reservoirs
    Pu, Wanfen
    Wei, Bing
    Jin, Fayang
    Li, Yibo
    Jia, Hu
    Liu, Penggang
    Tang, Zhijuan
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 111 : 269 - 276
  • [8] Combination of a chemical blend with CO2 huff-n-puff for enhanced oil recovery in oil shales
    Zeng, Tongzhou
    Miller, Chammi S.
    Mohanty, Kishore K.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 194 (194)
  • [9] N2 and CO2 Huff-n-Puff for Enhanced Tight Oil Recovery: An Experimental Study Using Nuclear Magnetic Resonance
    Song, Yilei
    Song, Zhaojie
    Zeng, Haiwei
    Tai, Chunlei
    Chang, Xuya
    ENERGY & FUELS, 2022, 36 (03) : 1515 - 1521
  • [10] Quantitative study of CO2 huff-n-puff enhanced oil recovery in tight formation using online NMR technology
    Liu, Junrong
    Li, Hangyu
    Tan, Qizhi
    Liu, Shuyang
    Zhao, Hailong
    Wang, Zhiqiang
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 216