Improving accuracy and robustness of deep convolutional neural network based thoracic OAR segmentation

被引:22
|
作者
Feng, Xue [1 ,3 ]
Bernard, Mark E. [2 ]
Hunter, Thomas [2 ]
Chen, Quan [2 ,3 ]
机构
[1] Univ Virginia, Dept Biomed Engn, Charlottesville, VA 22903 USA
[2] Univ Kentucky, Dept Radiat Med, Lexington, KY 40536 USA
[3] Carina Med LLC, 145 Graham Ave,A168, Lexington, KY 40536 USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2020年 / 65卷 / 07期
关键词
deep learning; segmentation; generalization error; robustness; ORGANS; CT;
D O I
10.1088/1361-6560/ab7877
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Deep convolutional neural network (DCNN) has shown great success in various medical image segmentation tasks, including organ-at-risk (OAR) segmentation from computed tomography (CT) images. However, most studies use the dataset from the same source(s) for training and testing so that the ability of a trained DCNN to generalize to a different dataset is not well studied, as well as the strategy to address the issue of performance drop on a different dataset. In this study we investigated the performance of a well-trained DCNN model from a public dataset for thoracic OAR segmentation on a local dataset and explored the systematic differences between the datasets. We observed that a subtle shift of organs inside patient body due to the abdominal compression technique during image acquisition caused significantly worse performance on the local dataset. Furthermore, we developed an optimal strategy via incorporating different numbers of new cases from the local institution and using transfer learning to improve the accuracy and robustness of the trained DCNN model. We found that by adding as few as 10 cases from the local institution, the performance can reach the same level as in the original dataset. With transfer learning, the training time can be significantly shortened with slightly worse performance for heart segmentation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training
    Liu, Sheng
    Li, Xiao
    Zhai, Yuexiang
    You, Chong
    Zhu, Zhihui
    Fernandez-Granda, Carlos
    Qu, Qing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [2] Improving the Robustness of a Deep Learning Based Thoracic CT Segmentation Algorithm (DLSeg)
    Chen, Q.
    Feng, X.
    Bernard, M.
    MEDICAL PHYSICS, 2019, 46 (06) : E123 - E123
  • [3] Human Segmentation Based on Compressed Deep Convolutional Neural Network
    Miao, Jun
    Sun, Keqiang
    Liao, Xuan
    Leng, Lu
    Chu, Jun
    IEEE ACCESS, 2020, 8 : 167585 - 167595
  • [4] Improving automated latent fingerprint detection and segmentation using deep convolutional neural network
    Chhabra, Megha
    Ravulakollu, Kiran Kumar
    Kumar, Manoj
    Sharma, Abhay
    Nayyar, Anand
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (09): : 6471 - 6497
  • [5] Improving automated latent fingerprint detection and segmentation using deep convolutional neural network
    Megha Chhabra
    Kiran Kumar Ravulakollu
    Manoj Kumar
    Abhay Sharma
    Anand Nayyar
    Neural Computing and Applications, 2023, 35 : 6471 - 6497
  • [6] Convolutional Neural Network Based Segmentation
    Silvoster, Leena M.
    Govindan, V. K.
    COMPUTER NETWORKS AND INTELLIGENT COMPUTING, 2011, 157 : 190 - 197
  • [7] Deep Convolutional Neural Network for Brain Tumor Segmentation
    Kumar, K. Sambath
    Rajendran, A.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (05) : 3925 - 3932
  • [8] Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images
    Chen, Chen
    Bai, Wenjia
    Davies, Rhodri H.
    Bhuva, Anish N.
    Manisty, Charlotte H.
    Augusto, Joao B.
    Moon, James C.
    Aung, Nay
    Lee, Aaron M.
    Sanghvi, Mihir M.
    Fung, Kenneth
    Paiva, Jose Miguel
    Petersen, Steffen E.
    Lukaschuk, Elena
    Piechnik, Stefan K.
    Neubauer, Stefan
    Rueckert, Daniel
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
  • [9] Deep convolutional neural network for prostate MR segmentation
    Tian, Zhiqiang
    Liu, Lizhi
    Fei, Baowei
    MEDICAL IMAGING 2017: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2017, 10135
  • [10] Deep Foreground Segmentation using Convolutional Neural Network
    Shahbaz, Ajmal
    Jo, Kang-Hyun
    2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 1397 - 1400