Metamodel-based Markov-Chain-Monte-Carlo parameter inversion applied in eddy current flaw characterization

被引:13
|
作者
Cai, Caifang [1 ]
Miorelli, Roberto [2 ]
Lambert, Marc [3 ]
Rodet, Thomas [4 ]
Lesselier, Dominique [1 ]
Lhuillier, Pierre-Emile [5 ]
机构
[1] Univ Paris Saclay, UMR CNRS 8506, L2S, CNRS,Cent Supelec,Univ Paris Sud, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[2] CEA, LIST, Dept Imagerie Simulat Controle, F-91191 Gif Sur Yvette, France
[3] UPMC Univ Paris 06, Univ Paris Sud, Univ Paris Saclay, GeePs,UMR CNRS 8507,Cent Supelec,Sorbonne Univ, 3 & 11 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[4] Univ Paris Saclay, ENS Cachan, SATIE, 61 Ave President Wilson, F-94230 Cachan, France
[5] EDF Lab Renardieres, Dept MMC, EDF R&D, F-77818 Moret Sur Loing, France
关键词
Inversion; MCMC; Eddy-current; Metamodel; Bayesian; IDEAL CRACK; COMPUTATION; SIGNALS; STATE;
D O I
10.1016/j.ndteint.2018.02.004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Flaw characterization in eddy current testing usually requires to solve a non-linear inverse problem. Due to high computational cost, Markov Chain Monte Carlo (MCMC) methods are hardly employed since often needing many forward evaluations. However, they have good potential in dealing with complicated forward models and they do not reduce to only providing the parameters sought. Here, we introduce a computationally-cheap surrogate forward model into a MCMC algorithm for eddy current flaw characterization. Due to the use of a database trained off-line, we benefit from the MCMC algorithm for getting more information and we do not suffer from the computational burden. Numerous experiments are carried out to validate the approach. The results include not only the estimated parameters, but also standard deviations, marginal densities and correlation coefficients between two parameters of interest.
引用
收藏
页码:13 / 22
页数:10
相关论文
共 39 条
  • [1] Markov chain Monte Carlo-based method for flaw detection in beams
    Glaser, Ronald E.
    Lee, Christopher L.
    Nitao, John J.
    Hickling, Tracy L.
    Hanley, William G.
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 2007, 133 (12): : 1258 - 1267
  • [2] Layered crustal anisotropy and deformation in the SE Tibetan plateau revealed by Markov-Chain-Monte-Carlo inversion of receiver functions
    Han, Cunrui
    Xu, Mijian
    Huang, Zhouchuan
    Wang, Liangshu
    Xu, Mingjie
    Mi, Ning
    Yu, Dayong
    Gou, Tao
    Wang, Haibo
    Hao, Shijie
    Tian, Muyu
    Bi, Yajing
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 2020, 306
  • [3] Markov chain Monte Carlo methods applied to the stochastic inversion of 1D viscoelastic parameters
    Azevedo, Juarez S.
    Borges, Marcio R.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (06): : 1093 - 1109
  • [4] Bayesian Markov-Chain-Monte-Carlo Inversion or Time-Lapse Crosshole GPR Data to Characterize the Vadose Zone at the Arrenaes Site, Denmark
    Scholer, Marie
    Irving, James
    Looms, Majken C.
    Nielsen, Lars
    Holliger, Klaus
    VADOSE ZONE JOURNAL, 2012, 11 (04):
  • [5] Parameter stability and consistency in an alongshore-current model determined with Markov chain Monte Carlo
    Ruessink, B. G.
    JOURNAL OF HYDROINFORMATICS, 2008, 10 (02) : 153 - 162
  • [6] Machine learning-accelerated gradient-based Markov chain Monte Carlo inversion applied to electrical resistivity tomography
    Aleardi, Mattia
    Vinciguerra, Alessandro
    Stucchi, Eusebio
    Hojat, Azadeh
    NEAR SURFACE GEOPHYSICS, 2022, 20 (04) : 440 - 461
  • [7] Transdimensional Markov Chain Monte Carlo joint inversion of direct current resistivity and transient electromagnetic data
    Peng, Ronghua
    Yogeshwar, Pritam
    Liu, Yajun
    Hu, Xiangyun
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 224 (02) : 1430 - 1443
  • [8] Zoeppritz-based AVO inversion using an improved Markov chain Monte Carlo method
    Xin-Peng Pan
    Guang-Zhi Zhang
    Jia-Jia Zhang
    Xing-Yao Yin
    Petroleum Science, 2017, 14 (01) : 75 - 83
  • [9] Bayesian Markov Chain Monte Carlo inversion of surface-based transient electromagnetic data
    Deng, Shengqiang
    Zhang, Nuoya
    Kuang, Bo
    Li, Yaohua
    Sun, Huaifeng
    SN APPLIED SCIENCES, 2022, 4 (10):
  • [10] Bayesian Markov Chain Monte Carlo inversion of surface-based transient electromagnetic data
    Shengqiang Deng
    Nuoya Zhang
    Bo Kuang
    Yaohua Li
    Huaifeng Sun
    SN Applied Sciences, 2022, 4