4D printed tunable mechanical metamaterials with shape memory operations

被引:106
|
作者
Bodaghi, M. [1 ,2 ]
Liao, W. H. [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Smart Mat & Struct Lab, Shatin, Hong Kong, Peoples R China
[2] Nottingham Trent Univ, Sch Sci & Technol, Dept Engn, Nottingham NG11 8NS, England
关键词
4D printing; SMPs; tunable metamaterials; memory operations; experiments; FEM;
D O I
10.1088/1361-665X/ab0b6b
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The aim of this paper is to introduce tunable continuous-stable metamaterials with reversible thermo-mechanical memory operations by four-dimensional (4D) printing technology. They are developed based on an understanding on glassy-rubbery behaviors of shape memory polymers and hot/cold programming derived from experiments and theory. Fused decomposition modeling as a well-known 3D printing technology is implemented to fabricate mechanical metamaterials. They are experimentally tested revealing elastic-plastic and hyper-elastic behaviors in low and high temperatures at a large deformation range. A computational design tool is developed by implementing a 3D phenomenological constitutive model coupled with a geometrically nonlinear finite element method. Governing equations are then solved by an elastic-predictor plastic-corrector return map procedure along with the Newton-Raphson and Riks techniques to trace nonlinear equilibrium path. A tunable reversible mechanical metamaterial unit with bi-stable memory operations is printed and tested experimentally and numerically. By a combination of cold and hot programming, the unit shows potential applications in mimicking electronic memory devices like tactile displays and designing surface adaptive structures. Another design of the unit shows potentials to serve in designing self-deployable bio-medical stents. Experiments are also conducted to demonstrate potential applications of cold programming for introducing recoverable rolling-up chiral metamaterials and load-resistance supportive auxetics.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Tunable thermal transport in 4D printed mechanical metamaterials
    Owens, Charles Abdol-Hamid
    Wang, Yueping
    Farzinazar, Shiva
    Yang, Chen
    Lee, Howon
    Lee, Jaeho
    MATERIALS & DESIGN, 2023, 231
  • [2] 4D printed programmable auxetic metamaterials with shape memory effects
    Wan, Mengqi
    Yu, Keqin
    Sun, Huiyu
    COMPOSITE STRUCTURES, 2022, 279
  • [3] 4D printed bio-inspired polygonal metamaterials with tunable mechanical properties
    Zhou, Xueli
    Liu, Hongpei
    Zhang, Jifeng
    Ren, Lei
    Zhang, Lu
    Liu, Qingping
    Li, Bingqian
    Xu, Chao
    Ren, Luquan
    THIN-WALLED STRUCTURES, 2024, 205
  • [4] Bio-inspired 4D printed intelligent lattice metamaterials with tunable mechanical property
    Zhang, Xinchun
    Han, Yuesong
    Zhu, Min
    Chu, Yuhao
    Li, Weiduan
    Zhang, Yanpeng
    Zhang, Yan
    Luo, Junrong
    Tao, Ran
    Qi, Junfeng
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 272
  • [5] 4D printed shape memory metamaterials with sensing capability derived from the origami concept
    Zhao, Wei
    Li, Nan
    Liu, Xu
    Liu, Liwu
    Yue, Chengbin
    Zeng, Chengjun
    Liu, Yanju
    Leng, Jinsong
    NANO ENERGY, 2023, 115
  • [6] 4D PRINTED BILAYER HELICAL STRUCTURES MECHANICAL BEHAVIORS AND SHAPE MEMORY EFFECTS
    Zeng, Siyuan
    Feng, Yixiong
    Gao, Yicong
    Tan, Jianrong
    Wei, Zhe
    PROCEEDINGS OF ASME 2021 CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS (SMASIS2021), 2021,
  • [7] 4D printed anisotropic structures with tailored mechanical behaviors and shape memory effects
    Liu, Tianzhen
    Liu, Liwu
    Zeng, Chengjun
    Liu, Yanju
    Leng, Jinsong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 186
  • [8] 4D Printing of Chiral Mechanical Metamaterials with Modular Programmability using Shape Memory Polymer
    Wu, Yi
    Han, Ying
    Wei, Zhuxuan
    Xie, Yu
    Yin, Jun
    Qian, Jin
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (52)
  • [9] 4D printed multi-stable metamaterials with mechanically tunable performance
    Tao, Ran
    Xi, Li
    Wu, Wenwang
    Li, Ying
    Liao, Binbin
    Liu, Liwu
    Leng, Jinsong
    Fang, Daining
    COMPOSITE STRUCTURES, 2020, 252
  • [10] 4D printed TMP origami metamaterials with programmable mechanical properties
    Wan, Mengqi
    Yu, Keqin
    Gu, Jianping
    Zeng, Hao
    Sun, Huiyu
    Khatibi, Akbar A.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 250