Lipschitz continuous dynamic programming with discount

被引:4
|
作者
Maroto, JM
Moran, M [1 ]
机构
[1] Univ Complutense, Dept Fundamentos Anal Econ 1, Madrid 28223, Spain
[2] Univ Complutense, Dept Estadist & Invest Operat 2, Madrid 28223, Spain
关键词
dynamic programming; optimization; optimal growth; renewable resources; non-smoothness;
D O I
10.1016/j.na.2005.03.100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that if the return function, the technological constraints and the transition function of a standard problem of stochastic dynamic programming with discount satisfy Lipschitz regularity assumptions, then the value function is Lipschitz regular. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:877 / 894
页数:18
相关论文
共 50 条
  • [1] Lipschitz continuous dynamic programming with discount II
    Maroto, Jose M.
    Moran, Manuel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (07) : 1999 - 2011
  • [2] The dynamic programming method for locally Lipschitz continuous functions
    Subbotina, NN
    DOKLADY MATHEMATICS, 2003, 67 (02) : 189 - 192
  • [3] Stochastic Lipschitz dynamic programming
    Shabbir Ahmed
    Filipe Goulart Cabral
    Bernardo Freitas Paulo da Costa
    Mathematical Programming, 2022, 191 : 755 - 793
  • [4] Stochastic Lipschitz dynamic programming
    Ahmed, Shabbir
    Cabral, Filipe Goulart
    Paulo da Costa, Bernardo Freitas
    MATHEMATICAL PROGRAMMING, 2022, 191 (02) : 755 - 793
  • [5] On maximin dynamic programming and the rate of discount
    Jean-Pierre Drugeon
    Thai Ha-Huy
    Thi Do Hanh Nguyen
    Economic Theory, 2019, 67 : 703 - 729
  • [6] On maximin dynamic programming and the rate of discount
    Drugeon, Jean-Pierre
    Thai Ha-Huy
    Thi Do Hanh Nguyen
    ECONOMIC THEORY, 2019, 67 (03) : 703 - 729
  • [7] DISCRETE DYNAMIC PROGRAMMING WITH SENSITIVE DISCOUNT OPTIMALITY CRITERIA
    VEINOTT, AF
    ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05): : 1635 - &
  • [8] Constrained dynamic programming with two discount factors: Applications and an algorithm
    Feinberg, EA
    Shwartz, A
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (03) : 628 - 631
  • [9] An application of Continuous Dynamic Programming
    Radhika, K. R.
    Venkatesha, M. K.
    Sekhar, G. N.
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 2519 - 2523
  • [10] Safe Approximate Dynamic Programming via Kernelized Lipschitz Estimation
    Chakrabarty, Ankush
    Jha, Devesh K.
    Buzzard, Gregery T.
    Wang, Yebin
    Vamvoudakis, Kyriakos G.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) : 405 - 419