A Contemporary Review on Drought Modeling Using Machine Learning Approaches

被引:48
|
作者
Sundararajan, Karpagam [1 ]
Garg, Lalit [2 ]
Srinivasan, Kathiravan [4 ]
Bashir, Ali Kashif [3 ]
Kaliappan, Jayakumar [4 ]
Ganapathy, Ganapathy Pattukandan [5 ]
Selvaraj, Senthil Kumaran [6 ]
Meena, T. [7 ]
机构
[1] Vellore Inst Technol, Sch Informat Technol & Engn, Vellore 632014, Tamil Nadu, India
[2] Univ Malta, Fac Informat & Commun Technol, MSD-2080 Msida, Malta
[3] Manchester Metropolitan Univ, Dept Comp & Math, Manchester M15 6BH, Lancs, England
[4] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore 632014, Tamil Nadu, India
[5] Vellore Inst Technol, Ctr Disaster Mitigat & Management, Vellore 632014, Tamil Nadu, India
[6] Vellore Inst Technol, Sch Mech Engn, Dept Mfg Engn, Vellore 632014, Tamil Nadu, India
[7] Vellore Inst Technol, Sch Civil Engn, Vellore 632014, Tamil Nadu, India
来源
关键词
Drought forecasting; machine learning; drought indices; stochastic models; fuzzy logic; dynamic method; hybrid method; SUPPORT VECTOR REGRESSION; ARTIFICIAL NEURAL-NETWORK; STANDARDIZED PRECIPITATION INDEX; AGRICULTURAL REFERENCE INDEX; FUZZY INFERENCE SYSTEM; MARKOV-CHAIN MODEL; CLIMATE INDEXES; RIVER-BASIN; VEGETATION INDEX; STREAMFLOW INDEX;
D O I
10.32604/cmes.2021.015528
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Its beginning and end are hard to gauge, and they can last for months or even for years. India has faced many droughts in the last few decades. Predicting future droughts is vital for framing drought management plans to sustain natural resources. The data-driven modelling for forecasting the metrological time series prediction is becoming more powerful and flexible with computational intelligence techniques. Machine learning (ML) techniques have demonstrated success in the drought prediction process and are becoming popular to predict the weather, especially the minimum temperature using backpropagation algorithms. The favourite ML techniques for weather forecasting include singular vector machines (SVM), support vector regression, random forest, decision tree, logistic regression, Naive Bayes, linear regression, gradient boosting tree, k-nearest neighbours (KNN), the adaptive neuro-fuzzy inference system, the feed-forward neural networks, Markovian chain, Bayesian network, hidden Markov models, and autoregressive moving averages, evolutionary algorithms, deep learning and many more. This paper presents a recent review of the literature using ML in drought prediction, the drought indices, dataset, and performance metrics.
引用
收藏
页码:447 / 487
页数:41
相关论文
共 50 条
  • [1] Hybrid wavelet packet machine learning approaches for drought modeling
    Das, Prabal
    Naganna, Sujay Raghavendra
    Deka, Paresh Chandra
    Pushparaj, Jagalingam
    ENVIRONMENTAL EARTH SCIENCES, 2020, 79 (10)
  • [2] Hybrid wavelet packet machine learning approaches for drought modeling
    Prabal Das
    Sujay Raghavendra Naganna
    Paresh Chandra Deka
    Jagalingam Pushparaj
    Environmental Earth Sciences, 2020, 79
  • [3] A Review of Hydrodynamic and Machine Learning Approaches for Flood Inundation Modeling
    Karim, Fazlul
    Armin, Mohammed Ali
    Ahmedt-Aristizabal, David
    Tychsen-Smith, Lachlan
    Petersson, Lars
    WATER, 2023, 15 (03)
  • [4] Forecasting drought using machine learning: a systematic literature review
    Oyarzabal, Ricardo S.
    Santos, Leonardo B. L.
    Cunningham, Christopher
    Broedel, Elisangela
    de Lima, Glauston R. T.
    Cunha-Zeri, Gisleine
    Peixoto, Jerusa S.
    Anochi, Juliana A.
    Garcia, Klaifer
    Costa, Lidiane C. O.
    Pampuch, Luana A.
    Cuartas, Luz Adriana
    Zeri, Marcelo
    Guedes, Marcia R. G.
    Negri, Rogerio G.
    Munoz, Viviana A.
    Cunha, Ana Paula M. A.
    NATURAL HAZARDS, 2025,
  • [5] A Review of Using Machine Learning Approaches for Precision Education
    Luan, Hui
    Tsai, Chin-Chung
    EDUCATIONAL TECHNOLOGY & SOCIETY, 2021, 24 (01): : 250 - 266
  • [6] A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids
    Ramezanizadeh, Mahdi
    Ahmadi, Mohammad Hossein
    Nazari, Mohammad Alhuyi
    Sadeghzadeh, Milad
    Chen, Lingen
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 114
  • [7] Malware Classification Approaches Using Machine Learning Techniques: A Review
    Naik, Shivarti
    Dessai, Amita
    2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 111 - 117
  • [8] Writer identification using machine learning approaches: a comprehensive review
    Arshia Rehman
    Saeeda Naz
    Muhammad Imran Razzak
    Multimedia Tools and Applications, 2019, 78 : 10889 - 10931
  • [9] A Review of Denoising Medical Images Using Machine Learning Approaches
    Kaur, Prabhpreet
    Singh, Gurvinder
    Kaur, Parminder
    CURRENT MEDICAL IMAGING REVIEWS, 2018, 14 (05) : 675 - 685
  • [10] Writer identification using machine learning approaches: a comprehensive review
    Rehman, Arshia
    Naz, Saeeda
    Razzak, Muhammad Imran
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (08) : 10889 - 10931