On the Index of Invariant Subspaces in the Space of Weak Products of Dirichlet Functions

被引:3
|
作者
Luo, Shuaibing [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
Dirichlet space; Weak products; Index; Pseudocontinuation; BILINEAR-FORMS;
D O I
10.1007/s11785-014-0419-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let denote the classical Dirichlet space of analytic functions in the open unit disc with finite Dirichlet integral, . Furthermore, let be the space of weak products of functions in , i.e. all functions that can be written as for some with . The dual of has been characterized in 2010 by Arcozzi, Rochberg, Sawyer, and Wick as the space of analytic functions on such that is a Carleson measure for the Dirichlet space. In this paper we show that for functions in proper weak*-closed -invariant subspaces of , the functions are in the Nevanlinna class of and have meromorphic pseudocontinuations in the Nevanlinna class of the exterior disc. We then use this result to show that every nonzero -invariant subspace of has index 1, i.e. satisfies dim N/z N = 1.
引用
收藏
页码:1311 / 1323
页数:13
相关论文
共 50 条
  • [1] On the Index of Invariant Subspaces in the Space of Weak Products of Dirichlet Functions
    Shuaibing Luo
    Complex Analysis and Operator Theory, 2015, 9 : 1311 - 1323
  • [2] Invariant Subspaces of the Dirichlet Space
    El-Fallah, Omar
    Kellay, Karim
    Ransford, Thomas
    HILBERT SPACES OF ANALYTIC FUNCTIONS, 2010, 51 : 133 - +
  • [3] Extremal functions and invariant subspaces in Dirichlet spaces
    El-Fallah, O.
    Elmadani, Y.
    Labghail, I.
    ADVANCES IN MATHEMATICS, 2022, 408
  • [4] Hankel operators and invariant subspaces of the Dirichlet space
    Luo, Shuaibing
    Richter, Stefan
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 : 423 - 438
  • [5] On unitary equivalence of invariant subspaces of the Dirichlet space
    Guo, Kunyu
    Zhao, Liankuo
    STUDIA MATHEMATICA, 2010, 196 (02) : 143 - 150
  • [6] Invariant subspaces of the Dirichlet space and commutative algebra
    Fang, X
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 569 : 189 - 211
  • [7] Weak products of Dirichlet functions
    Richter, Stefan
    Sundberg, Carl
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 5270 - 5299
  • [8] METHODS OF APPROXIMATION OF FUNCTIONS IN INVARIANT SUBSPACES BY DIRICHLET POLYNOMIALS
    KRASICHKOVTERNOVSKII, IF
    SIBERIAN MATHEMATICAL JOURNAL, 1975, 16 (05) : 779 - 787
  • [9] Invariant subspaces of parabolic self-maps in the Dirichlet space
    Montes-Rodriguez, Alfonso
    Ponce-Escudero, Manuel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (07) : 4115 - 4120
  • [10] INVARIANT SUBSPACES OF COMPOSITION OPERATORS ON A HILBERT SPACE OF DIRICHLET SERIES
    Wang, Maofa
    Yao, Xingxing
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (04): : 179 - 190