Matroid matching with Dilworth truncation

被引:0
|
作者
Makai, Marton [1 ,2 ]
机构
[1] EOTVOS Lorand Univ, Egervary Res Grp Combinatorial Optimizat, H-1117 Budapest, Hungary
[2] Commun Networks Lab, H-1117 Budapest, Hungary
关键词
matroid matching; Dilworth truncation; double circuit property;
D O I
10.1016/j.disc.2007.07.076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H = (V, E) be a hypergraph and let k >= 1 and l >= 0 be fixed integers. Let M be the matroid with ground-set E s.t. a set F subset of E is independent if and only if each X subset of V with k|X| - l >= 0 spans at most k |X| - l hyperedges of F. We prove that if H is dense enough, then M satisfies the double circuit property, thus Lovasz' min-max formula on the maximum matroid matching holds for Our result implies the Berge-Tutte formula on the maximum matching of graphs (k = 1, l = 0), generalizes Lovasz' graphic matroid (cycle matroid) matching formula to hypergraphs (k = l = 1) and gives a min-max formula for the maximum matroid matching in the two-dimensional rigidity matroid (k = 2, l = 3). (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:1394 / 1404
页数:11
相关论文
共 50 条
  • [2] THE BOX CONVOLUTION AND THE DILWORTH TRUNCATION OF BISUBMODULAR FUNCTIONS
    Fujishiget, Satoru
    Patkar, Sachin b.
    PACIFIC JOURNAL OF OPTIMIZATION, 2024, 20 (03):
  • [3] Generalized matroid matching
    Recski, Andras
    Szabo, Jacint
    DISCRETE APPLIED MATHEMATICS, 2020, 276 : 129 - 133
  • [4] MATROID MATCHING AND SOME APPLICATIONS
    LOVASZ, L
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (02) : 208 - 236
  • [5] MATROID MATCHING IN PSEUDOMODULAR LATTICES
    HOCHSTATTLER, W
    KERN, W
    COMBINATORICA, 1989, 9 (02) : 145 - 152
  • [6] On matroid parity and matching polytopes
    Kaparis, Konstantinos
    Letchford, Adam N.
    Mourtos, Ioannis
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 322 - 331
  • [7] MATROID MATCHING: THE POWER OF LOCAL SEARCH
    Lee, Jon
    Sviridenko, Maxim
    Vondrak, Jan
    SIAM JOURNAL ON COMPUTING, 2013, 42 (01) : 357 - 379
  • [8] An algorithm for weighted fractional matroid matching
    Gijswijt, Dion
    Pap, Gyula
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2013, 103 (04) : 509 - 520
  • [9] A NOTE ON THE SEPARATION PROBLEM FOR THE MATCHING MATROID
    PRODON, A
    DISCRETE MATHEMATICS, 1984, 52 (2-3) : 307 - 311
  • [10] Matroid Matching: the Power of Local Search
    Lee, Jon
    Sviridenko, Maxim
    Vondrak, Jan
    STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 369 - 378