Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover

被引:231
作者
Callaghan, AJ
Marcaida, MJ
Stead, JA
McDowall, KJ
Scott, WG
Luisi, BF
机构
[1] Univ Cambridge, Dept Biochem, Cambridge CB2 1GA, England
[2] Univ Leeds, Astbury Ctr Struct Mol Biol, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[4] Univ Calif Santa Cruz, Sinsheimer Labs, Ctr Mol Biol RNA, Santa Cruz, CA 95064 USA
基金
英国惠康基金;
关键词
D O I
10.1038/nature04084
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The coordinated regulation of gene expression is required for homeostasis, growth and development in all organisms. Such coordination may be partly achieved at the level of messenger RNA stability(1), in which the targeted destruction of subsets of transcripts generates the potential for cross-regulating metabolic pathways. In Escherichia coli, the balance and composition of the transcript population is affected by RNase E, an essential endoribonuclease that not only turns over RNA but also processes certain key RNA precursors(2-10). RNase E cleaves RNA internally, but its catalytic power is determined by the 50 terminus of the substrate, even if this lies at a distance from the cutting site(11-14). Here we report crystal structures of the catalytic domain of RNase E as trapped allosteric intermediates with RNA substrates. Four subunits of RNase E catalytic domain associate into an interwoven quaternary structure, explaining why the subunit organization is required for catalytic activity. The subdomain encompassing the active site is structurally congruent to a deoxyribonuclease, making an unexpected link in the evolutionary history of RNA and DNA nucleases. The structure explains how the recognition of the 50 terminus of the substrate may trigger catalysis and also sheds light on the question of how RNase E might selectively process, rather than destroy, specific RNA precursors.
引用
收藏
页码:1187 / 1191
页数:5
相关论文
共 30 条
[1]  
APIRION D, 1978, J BIOL CHEM, V253, P1738
[2]  
AVARIND L, 2001, METHOD ENZYMOL, V341, P3
[3]   Global analysis of Escherichia coli RNA degradosome function using DNA microarrays [J].
Bernstein, JA ;
Lin, PH ;
Cohen, SN ;
Lin-Chao, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2758-2763
[4]   CONTROL OF RNASE-E-MEDIATED RNA DEGRADATION BY 5'-TERMINAL BASE-PAIRING IN ESCHERICHIA-COLI [J].
BOUVET, P ;
BELASCO, JG .
NATURE, 1992, 360 (6403) :488-491
[5]   Zn-Link: A metal-sharing interface that organizes the quaternary structure and catalytic site of the endoribonuclease, RNase E [J].
Callaghan, AJ ;
Redko, Y ;
Murphy, LM ;
Grossmann, JG ;
Yates, D ;
Garman, E ;
Ilag, LL ;
Robinson, CV ;
Symmons, MF ;
McDowall, KJ ;
Luisi, BF .
BIOCHEMISTRY, 2005, 44 (12) :4667-4675
[6]   Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E [J].
Callaghan, AJ ;
Aurikko, JP ;
IIag, LL ;
Grossmann, JG ;
Chandran, V ;
Kühnel, K ;
Poljak, L ;
Carpousis, AJ ;
Robinson, CV ;
Symmons, MF ;
Luisi, BF .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (05) :965-979
[7]   Quaternary structure and catalytic activity of the Escherichia coli ribonuclease E amino-terminal catalytic domain [J].
Callaghan, AJ ;
Grossmann, JG ;
Redko, YU ;
Ilag, LL ;
Moncrieffe, MC ;
Symmons, MF ;
Robinson, CV ;
McDowall, KJ ;
Luisi, BF .
BIOCHEMISTRY, 2003, 42 (47) :13848-13855
[8]   The Escherichia coli RNA degradosome:: structure, function and relationship to other ribonucleolytic multienyzme complexes [J].
Carpousis, AJ .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2002, 30 :150-155
[9]  
Coburn GA, 1999, PROG NUCLEIC ACID RE, V62, P55
[10]   RNase E: Still a wonderfully mysterious enzyme [J].
Cohen, SN ;
McDowall, KJ .
MOLECULAR MICROBIOLOGY, 1997, 23 (06) :1099-1106