Determination of energy barrier distributions of magnetic nanoparticles by temperature dependent magnetorelaxometry

被引:25
|
作者
Romanus, E
Berkov, DV
Prass, S
Gross, C
Weitschies, W
Weber, P
机构
[1] Univ Greifswald, Inst Pharm, D-17487 Greifswald, Germany
[2] Univ Jena, Inst Solid State Phys, D-07743 Jena, Germany
[3] Innovent Technol Entwicklung, D-07745 Jena, Germany
关键词
D O I
10.1088/0957-4484/14/12/003
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a new method for the characterization of magnetic nanoparticles based on the analysis of the dependence of the Neel relaxation signal on the sample temperature. In contrast to the established characterization methods, the new method directly delivers the energy barrier distribution of the magnetic system (in the case of ferrofluid particles or their aggregates). A water based ferrofluid consisting of magnetic nanoparticles with an iron oxide core and a shell of carboxydextran has been magnetically fractionated and immobilized and the fractions have been investigated in a temperature range from 77 to 350 K. The influence of the fractionation process on the distribution of the energy barriers of the particle system has been studied qualitatively.
引用
收藏
页码:1251 / 1254
页数:4
相关论文
共 50 条
  • [1] Phenomenological analysis of magnetic nanoparticle size distributions with temperature dependent magnetorelaxometry
    Knopke, C.
    Wiekhorst, F.
    Loewa, N.
    Wagner, S.
    Schnorr, J.
    Trahms, L.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58
  • [2] Temperature dependent magnetorelaxometry of magnetic nanoparticle ensembles
    Arsalani, Soudabeh
    Radon, Patricia
    Eberbeck, Dietmar
    Koerber, Rainer
    Jaufenthaler, Aaron
    Baumgarten, Daniel
    Wiekhorst, Frank
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (17):
  • [3] Analysis and quantification of aggregated nanoparticles by temperature dependent magnetorelaxometry
    Knopke, C.
    Wiekhorst, F.
    Eberbeck, D.
    Wagner, S.
    Trahms, L.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2014, 59 : S625 - S627
  • [4] Examination of magnetite nanoparticles utilising the temperature dependent magnetorelaxometry
    Buettner, M.
    Weber, P.
    Lang, C.
    Roeder, M.
    Schueler, D.
    Goernert, P.
    Seidel, P.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (09) : 1179 - 1184
  • [5] Quantification of small magnetic nanoparticle characteristics by temperature dependent magnetorelaxometry
    Knopke, Ch.
    Wiekhorst, F.
    Gemeinhardt, I.
    Ebert, M.
    Schnorr, J.
    Taupitz, M.
    Trahms, L.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2012, 57 : 84 - 84
  • [6] Effective energy barrier distributions for random and aligned magnetic nanoparticles
    Eloi, J-C
    Okuda, M.
    Carreira, S. Correia
    Schwarzacher, W.
    Correia, M. J.
    Figueiredo, W.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (14)
  • [7] Magnetic anisotropy of FePt nanoparticles: Temperature-dependent free energy barrier for switching
    Zhou, Chenggang
    Schulthess, Thomas C.
    Mryasov, Oleg N.
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (06) : 2950 - 2952
  • [8] Quantification of Magnetic Nanoparticle Uptake in Cells by Temperature Dependent Magnetorelaxometry
    Knopke, Christian
    Wiekhorst, Frank
    Eberbeck, Dietmar
    Gemeinhardt, Ines
    Ebert, Monika
    Schnorr, Joerg
    Wagner, Susanne
    Taupitz, Matthias
    Trahms, Lutz
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (01) : 421 - 424
  • [9] Energy barrier distributions for magnetic nanoparticles with competing cubic and uniaxial anisotropies
    Correia, M. J.
    Figueiredo, W.
    Schwarzacher, W.
    PHYSICS LETTERS A, 2014, 378 (45) : 3366 - 3371
  • [10] Energy barrier distributions of maghemite nanoparticles
    Romanus, E.
    Koettig, T.
    Gloeckl, G.
    Prass, S.
    Schmidl, F.
    Heinrich, J.
    Gopinadhan, M.
    Berkov, D. V.
    Helm, C. A.
    Weitschies, W.
    Weber, P.
    Seidel, P.
    NANOTECHNOLOGY, 2007, 18 (11)