The effect of sodium and niobium co-doping on electrochemical performance of Li4Ti5O12 as anode material for lithium-ion batteries

被引:5
|
作者
Patat, S. [1 ,2 ,3 ]
Rahman, S. [1 ]
Dokan, F. Kilic [4 ]
机构
[1] Erciyes Univ, Sch Nat & Appl Sci, Chem Dept, Kayseri, Turkey
[2] Erciyes Univ, ERNAM, Kayseri, Turkey
[3] Middle East Tech Univ, ENDAM, Ankara, Turkey
[4] Kayseri Univ, Mustafa Cikrikcioglu Vocat Sch, Kayseri, Turkey
关键词
Li-ion battery; Li4Ti5O12; Na and Nb co-doping; Solid-state reaction; DOPED LI4TI5O12; RATE CAPABILITY; MICROSPHERES; NANOSHEETS; CONDUCTIVITY;
D O I
10.1007/s11581-022-04579-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na+- and Nb5+-co-doped Li3.98Na0.02Ti4.98Nb0.02O12 (NaNbLTO), the anode material for lithium-ion batteries, is synthesized by simple solid-state reaction route at 850 degrees C for 12 h. Na+ is introduced into the main structure to expand the lattice, while Nb5+ increases the electronic conductivity through the reduction of some of Ti4+ ions to Ti-3. The anode material is explored by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and electric conductivity measurements. XRD patterns and FESEM images demonstrates that Na+ and Nb5+ co-doping do not alter the cubic spinel structure, the morphology, and the particle size of the Li4Ti5O12. Electric conductivity measurements reveal that the Na+- and Nb5+-co-doped NaNbLTO exhibits a higher electronic conductivity than the un-doped Li4Ti5O12 (LTO), Na+-doped Li3.98Na0.02Ti5O12 (NaLTO) and Nb5+ -doped Li4Ti4.98Nb0.02O12 (NbLTO). It is found that the discharge capacity of NaNbLTO is higher than those of the un-doped LTO, Na+-doped NaLTO, and Nb5+ -doped NbLTO at 0.1 C, 0.5 C, and 1.0 C current rates, which demonstrates the considerable synergic effect of Nb5+ and Na+ co-doping on improving the electrochemical performances of LTO. As evidence, NaNbLTO is a promising anode material for lithium-ion batteries.
引用
收藏
页码:3177 / 3185
页数:9
相关论文
共 50 条
  • [1] The effect of sodium and niobium co-doping on electrochemical performance of Li4Ti5O12 as anode material for lithium-ion batteries
    S. Patat
    S. Rahman
    F. Kılıç Dokan
    Ionics, 2022, 28 : 3177 - 3185
  • [2] The electrochemical effect of Al-doping on Li4Ti5O12 as anode material for lithium-ion batteries
    Ncube, Ntombizodwa M.
    Mhlongo, Welcome T.
    McCrindle, Robert I.
    Zheng, Haitao
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (04) : 10592 - 10601
  • [3] Synthesis and electrochemical performance of nanoporous Li4Ti5O12 anode material for lithium-ion batteries
    Shao, Dan
    He, Jiarong
    Luo, Ying
    Liu, Wei
    Yu, Xiaoyuan
    Fang, Yueping
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (06) : 2047 - 2053
  • [4] Synthesis and electrochemical performance of nanoporous Li4Ti5O12 anode material for lithium-ion batteries
    Dan Shao
    Jiarong He
    Ying Luo
    Wei Liu
    Xiaoyuan Yu
    Yueping Fang
    Journal of Solid State Electrochemistry, 2012, 16 : 2047 - 2053
  • [5] Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries
    Hsiao, Kuang-Che
    Liao, Shih-Chieh
    Chen, Jin-Ming
    ELECTROCHIMICA ACTA, 2008, 53 (24) : 7242 - 7247
  • [6] Review on doping strategy in Li4Ti5O12 as an anode material for Lithium-ion batteries
    Ezhyeh, Z. Nezamzadeh
    Khodaei, M.
    Torabi, F.
    CERAMICS INTERNATIONAL, 2023, 49 (05) : 7105 - 7141
  • [7] High performance Li4Ti5O12 material as anode for lithium-ion batteries
    Wang, Jie
    Zhao, Hailei
    Wen, Yeting
    Xie, Jingying
    Xia, Qing
    Zhang, Tianhou
    Zeng, Zhipeng
    Du, Xuefei
    ELECTROCHIMICA ACTA, 2013, 113 : 679 - 685
  • [8] Synthesis of Li4Ti5O12 Anode Material for Lithium-ion Batteries
    Liu Sheng-lin
    Zhao Xiu-juan
    Ren Rui-ming
    CHEMICAL ENGINEERING AND MATERIAL PROPERTIES, PTS 1 AND 2, 2012, 391-392 : 369 - 372
  • [9] Synthesis and electrochemical performances of Li4Ti5O12/C as anode material for lithium-ion batteries
    Gu, Fang
    Chen, Gang
    ADVANCED RESEARCH ON MATERIAL ENGINEERING, ARCHITECTURAL ENGINEERING AND INFORMATIZATION, 2012, 366 : 24 - 27
  • [10] Enhanced electrochemical performance of Li4Ti5O12 as anode material for lithium-ion batteries with different carbons as support
    Liu, Tingting
    Ni, Haifang
    Song, Wei-Li
    Fan, Li-Zhen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 646 : 189 - 194