Mobile-Sandbox: combining static and dynamic analysis with machine-learning techniques

被引:71
|
作者
Spreitzenbarth, Michael [1 ]
Schreck, Thomas [1 ]
Echtler, Florian [2 ]
Arp, Daniel [3 ]
Hoffmann, Johannes [4 ]
机构
[1] Univ Erlangen Nurnberg, D-91054 Erlangen, Germany
[2] Univ Regensburg, D-93053 Regensburg, Germany
[3] Univ Gottingen, D-37073 Gottingen, Germany
[4] Ruhr Univ Bochum, Bochum, Germany
关键词
Android; Malware; Automated analysis; Machine learning;
D O I
10.1007/s10207-014-0250-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Smartphones in general and Android in particular are increasingly shifting into the focus of cyber criminals. For understanding the threat to security and privacy, it is important for security researchers to analyze malicious software written for these systems. The exploding number of Android malware calls for automation in the analysis. In this paper, we present Mobile-Sandbox, a system designed to automatically analyze Android applications in novel ways: First, it combines static and dynamic analysis, i.e., results of static analysis are used to guide dynamic analysis and extend coverage of executed code. Additionally, it uses specific techniques to log calls to native (i.e., "non-Java") APIs, and last but not least it combines these results with machine-learning techniques to cluster the analyzed samples into benign and malicious ones. We evaluated the system on more than 69,000 applications from Asian third-party mobile markets and found that about 21 % of them actually use native calls in their code.
引用
收藏
页码:141 / 153
页数:13
相关论文
共 50 条
  • [1] Mobile-Sandbox: combining static and dynamic analysis with machine-learning techniques
    Michael Spreitzenbarth
    Thomas Schreck
    Florian Echtler
    Daniel Arp
    Johannes Hoffmann
    International Journal of Information Security, 2015, 14 : 141 - 153
  • [2] Combining Machine-Learning with Invariants Assurance Techniques for Autonomous Systems
    Mallozzi, Piergiuseppe
    PROCEEDINGS OF THE 2017 IEEE/ACM 39TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING COMPANION (ICSE-C 2017), 2017, : 485 - 486
  • [3] Sales forecasting by combining clustering and machine-learning techniques for computer retailing
    I-Fei Chen
    Chi-Jie Lu
    Neural Computing and Applications, 2017, 28 : 2633 - 2647
  • [4] Sales forecasting by combining clustering and machine-learning techniques for computer retailing
    Chen, I-Fei
    Lu, Chi-Jie
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (09): : 2633 - 2647
  • [5] Supervised learning from noisy observations: Combining machine-learning techniques with data assimilation
    Gottwald, Georg A.
    Reich, Sebastian
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 423
  • [6] Combining techniques of static analysis and dynamic evaluation for evaluation of code in programming learning environments
    Schneider, Gilvani
    Jaques, Patricia Augustin
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2016, 8 (01): : 114 - 129
  • [7] Combining Static and Dynamic Analysis to Improve Machine Learning-based Malware Classification
    Chanajitt, Rajchada
    Pfahringer, Bernhard
    Gomes, Heitor Murilo
    2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [8] Machine-learning techniques and their applications in manufacturing
    Pham, D. T.
    Afify, A. A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2005, 219 (05) : 395 - 412
  • [9] Mental Health Predictive Analysis Using Machine-Learning Techniques
    Jain, Vanshika
    Kumari, Ritika
    Bansal, Poonam
    Dev, Amita
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 4, SMARTCOM 2024, 2024, 948 : 103 - 115
  • [10] Security analysis of menstruation cycle tracking applications using static, dynamic and machine learning techniques
    Deverashetti, Mounika
    Ranjitha, K.
    Pradeepthi, K.V.
    Journal of Information Security and Applications, 2022, 67