De Novo Simulation of Charge Transport through Organic Single-Carrier Devices

被引:4
|
作者
Kaiser, Simon [1 ]
Kotadiya, Naresh B. [2 ]
Rohloff, Roland [2 ]
Fediai, Artem [1 ]
Symalla, Franz [3 ]
Neumann, Tobias [3 ]
Wetzelaer, Gert-Jan A. H. [2 ]
Blom, Paul W. M. [2 ]
Wenzel, Wolfgang [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany
[2] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[3] Nanomatch GmbH, D-76185 Karlsruhe, Germany
基金
欧盟地平线“2020”;
关键词
ELECTRONIC-STRUCTURE; APPROXIMATION; POTENTIALS; EXCHANGE; MOBILITY; ENERGY;
D O I
10.1021/acs.jctc.1c00584
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In amorphous organic semiconductor devices, electrons and holes are transported through layers of small organic molecules or polymers. The overall performance of the device depends both on the material and the device configuration. Measuring a single device configuration requires a large effort of synthesizing the molecules and fabricating the device, rendering the search for promising materials in the vast molecular space both nontrivial and time-consuming. This effort could be greatly reduced by computing the device characteristics from the first principles. Here, we compute transport characteristics of unipolar single-layer devices of prototypical holeand electron-transporting materials, N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (alpha-NPD) and 2,2',2 ''-(1,3,5benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) using a first-principles multiscale approach that requires only the molecular constituents and the device geometry. This approach of generating a digital twin of the entire device can be extended to multilayer stacks and enables the computer design of materials and devices to facilitate systematic improvement of organic light-emitting diode (OLED) devices.
引用
收藏
页码:6416 / 6422
页数:7
相关论文
共 50 条
  • [1] Determining charge carrier mobility in Schottky contacted single-carrier organic devices by impedance spectroscopy
    Tang, Ying
    Peng, Yingquan
    Sun, Lei
    Wei, Yi
    Xu, Sunan
    EPL, 2015, 112 (01)
  • [2] Monte Carlo study of charge transport in organic sandwich-type single-carrier devices: Effects of Coulomb interactions
    van der Holst, J. J. M.
    van Oost, F. W. A.
    Coehoorn, R.
    Bobbert, P. A.
    PHYSICAL REVIEW B, 2011, 83 (08)
  • [3] Automated open-source software for charge transport analysis in single-carrier organic semiconductor diodes
    Felekidis, Nikolaos
    Melianas, Armantas
    Kemerink, Martijn
    ORGANIC ELECTRONICS, 2018, 61 : 318 - 328
  • [4] On injection in intrinsic single-carrier devices
    Jason A. Röhr
    Journal of Computational Electronics, 2024, 23 : 224 - 232
  • [5] On injection in intrinsic single-carrier devices
    Rohr, Jason A.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2024, 23 (02) : 224 - 232
  • [6] SINGLE-CARRIER SPACE-CHARGE CONTROLLED CONDUCTION VS BALLISTIC TRANSPORT IN GAAS DEVICES AT 77-DEGREES-K
    SCHMIDT, PE
    OCTAVIO, M
    ESQUEDA, PD
    ELECTRON DEVICE LETTERS, 1981, 2 (08): : 205 - 207
  • [7] Single-Carrier Transport in Graphene/hBN Superlattices
    Iwasaki, Takuya
    Nakaharai, Shu
    Wakayama, Yutaka
    Watanabe, Kenji
    Taniguchi, Takashi
    Morita, Yoshifumi
    Moriyama, Satoshi
    NANO LETTERS, 2020, 20 (04) : 2551 - 2557
  • [8] Single carrier devices with electrical doped layers for the characterization of charge-carrier transport in organic thin-films
    Schober, Matthias
    Olthof, Selina
    Furno, Mauro
    Luessem, Bjoern
    Leo, Karl
    APPLIED PHYSICS LETTERS, 2010, 97 (01)
  • [9] Electrode roughness effect on charge carrier injection and transport in organic devices
    Novikov, SV
    Vannikov, AV
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2002, 384 (01) : 55 - 60
  • [10] SINGLE-CARRIER SPACE-CHARGE CONTROLLED CONDUCTION
    SCHMIDT, PE
    OCTAVIO, M
    CALLAROTTI, RC
    HENISCH, HK
    JOURNAL OF APPLIED PHYSICS, 1982, 53 (07) : 4996 - 5005