Hybrid Sparse Subspace Clustering for Visual Tracking

被引:0
|
作者
Ma, Lin [1 ,2 ]
Liu, Zhihua [1 ]
机构
[1] Samsung Res Inst China Beijing SRC B, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many conditions, the object samples are distributed in a number of different subspaces. By segmenting the subspaces with spectral clustering based subspace clustering, more accurate sample distribution is obtained. The LSR (Least Squares Regression) sparse subspace clustering method which fulfills the EBD (Enhance Block Diagonal) criterion and has closed-form solution, is an important spectral clustering based sparse subspace clustering method. However, LSR uses no discriminative information which is important to discriminate positive samples from the negative samples. Thus, we propose a new hybrid sparse subspace clustering method which makes the clustering discriminative by involving the discriminative information provided by graph embedding into LSR. The sub subspaces obtained based on the new subspace clustering method can both retain the object distribution information and also make the object samples less confused with surrounding environment. Experimental results on a set of challenging videos in visual tracking demonstrate the effectiveness of our method in discriminating the object from the background.
引用
收藏
页码:1737 / 1742
页数:6
相关论文
共 50 条
  • [1] Visual tracking based on the sparse representation of the PCA subspace
    Chen D.-B.
    Zhu M.
    Wang H.-L.
    Optoelectronics Letters, 2017, 13 (05) : 392 - 396
  • [2] Visual tracking based on the sparse representation of the PCA subspace
    陈典兵
    朱明
    王慧利
    OptoelectronicsLetters, 2017, 13 (05) : 392 - 396
  • [3] Sparse Subspace Clustering
    Elhamifar, Ehsan
    Vidal, Rene
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2782 - 2789
  • [4] Robust Visual Tracking with Incremental Subspace Learning Sparse Model
    Wang, Hongqing
    Xu, Tingfa
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2721 - 2728
  • [5] Visual tracking algorithm based on the sparse-regularized subspace
    Chen D.-B.
    Zhu M.
    Wang H.-L.
    Yang H.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2018, 26 (04): : 989 - 997
  • [6] Scalable Sparse Subspace Clustering
    Peng, Xi
    Zhang, Lei
    Yi, Zhang
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 430 - 437
  • [7] DOWNSAMPLING FOR SPARSE SUBSPACE CLUSTERING
    Mao, Xianghui
    Wang, Xiaohan
    Gu, Yuantao
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3806 - 3810
  • [8] Noisy Sparse Subspace Clustering
    Wang, Yu-Xiang
    Xu, Huan
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [9] Reweighted sparse subspace clustering
    Xu, Jun
    Xu, Kui
    Chen, Ke
    Ruan, Jishou
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2015, 138 : 25 - 37
  • [10] SPARSE CONVOLUTION SUBSPACE CLUSTERING
    Luo, Chuan
    Zhao, Linchang
    Zhang, Taiping
    PROCEEDINGS OF 2020 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2020, : 31 - 35