Turbulent Prandtl number in the atmospheric boundary layer - where are we now?

被引:67
|
作者
Li, Dan [1 ]
机构
[1] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
关键词
Atmospheric boundary layer; Cospectral budget model; Thermal stratification; Turbulent Prandtl number; LARGE-EDDY SIMULATION; DIRECT NUMERICAL-SIMULATION; STABLY STRATIFIED FLOWS; TEMPERATURE-HUMIDITY CORRELATION; OBUKHOV SIMILARITY FUNCTIONS; DEPENDENT DYNAMIC-MODEL; SCALE ELIMINATION MODEL; FLUX RICHARDSON-NUMBER; SURFACE-LAYER; CLOSURE-MODEL;
D O I
10.1016/j.atmosres.2018.09.015
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
First-order turbulence closure schemes continue to be work-horse models for weather and climate simulations. The turbulent Prandtl number, which represents the dissimilarity between turbulent transport of momentum and heat, is a key parameter in such schemes. This paper reviews recent advances in our understanding and modeling of the turbulent Prandtl number in high-Reynolds number and thermally stratified atmospheric boundary layer (ABL) flows. Multiple lines of evidence suggest that there are strong linkages between the mean flow properties such as the turbulent Prandtl number in the atmospheric surface layer (ASL) and the energy spectra in the inertial subrange governed by the Kolmogorov theory. Such linkages are formalized by a recently developed cospectral budget model, which provides a unifying framework for the turbulent Prandtl number in the ASL. The model demonstrates that the stability-dependence of the turbulent Prandtl number can be essentially captured with only two phenomenological constants. The model further explains the stability- and scale-dependences of the subgrid-scale Prandtl number in large-eddy simulation. The connections between mean flow properties and microscale energy distributions shed novel insights into the breakdown of Monin-Obukhov similarity theory under strongly stable conditions.
引用
收藏
页码:86 / 105
页数:20
相关论文
共 50 条
  • [1] On the turbulent Prandtl number in the stable atmospheric boundary layer
    Grachev, Andrey A.
    Andreas, Edgar L.
    Fairall, Christopher W.
    Guest, Peter S.
    Persson, P. Ola G.
    BOUNDARY-LAYER METEOROLOGY, 2007, 125 (02) : 329 - 341
  • [2] On the turbulent Prandtl number in the stable atmospheric boundary layer
    Andrey A. Grachev
    Edgar L Andreas
    Christopher W. Fairall
    Peter S. Guest
    P. Ola G. Persson
    Boundary-Layer Meteorology, 2007, 125 : 329 - 341
  • [3] On the turbulent prandtl number in a stably stratified atmospheric boundary layer
    Kurbatskii, A. F.
    Kurbatskaya, L. I.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2010, 46 (02) : 169 - 177
  • [4] On the turbulent prandtl number in a stably stratified atmospheric boundary layer
    A. F. Kurbatskii
    L. I. Kurbatskaya
    Izvestiya, Atmospheric and Oceanic Physics, 2010, 46 : 169 - 177
  • [5] TURBULENT PRANDTL NUMBER - WHERE ARE WE
    KAYS, WM
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1994, 116 (02): : 284 - 295
  • [6] Revisiting the Turbulent Prandtl Number in an Idealized Atmospheric Surface Layer
    Li, Dan
    Katul, Gabriel G.
    Zilitinkevich, Sergej S.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2015, 72 (06) : 2394 - 2410
  • [7] Conditionally sampled turbulent prandtl number in the outer region of a turbulent boundary layer
    Wroblewski, DE
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1996, 118 (02): : 480 - 482
  • [8] Flux Richardson Number and Turbulent Prandtl Number in a Developing Stable Boundary Layer
    Kitamura, Yuji
    Hori, Akihiro
    Yagi, Toshimasa
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2013, 91 (05) : 655 - 666
  • [9] PRANDTL TURBULENT NUMBER IN THERMALLY NONSTATIONARY BOUNDARY-LAYER IN NOZZLES
    KOVALNOGOV, NN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII AVIATSIONAYA TEKHNIKA, 1992, (04): : 76 - 78
  • [10] Turbulent Prandtl number in the boundary layer on a plate: effect of the molecular Prandtl number, injection (suction), and longitudinal pressure gradient
    Lushchik, V. G.
    Makarova, M. S.
    THERMOPHYSICS AND AEROMECHANICS, 2018, 25 (02) : 169 - 182