Multiplicity of Nodal Solutions for a Class of Double-Phase Problems

被引:2
|
作者
Yang, Jie [1 ,2 ]
Chen, Haibo [1 ]
Liu, Senli [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Huaihua Univ, Dept Math, Huaihua 418008, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2020/3805803
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following parametric double-phase problem: impose any global growth conditions to the nonlinearity f (x, u), which refer solely to its behavior in a neighborhood of u= 0. And we will show that they suffice for the multiplicity of signed and nodal solutions of the double -phase problem above when A is large enough.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Existence and multiplicity of solutions for double-phase Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (03) : 546 - 560
  • [2] Anisotropic double-phase problems with indefinite potential: multiplicity of solutions
    Nikolaos S. Papageorgiou
    Dongdong Qin
    Vicenţiu D. Rădulescu
    Analysis and Mathematical Physics, 2020, 10
  • [3] Anisotropic double-phase problems with indefinite potential: multiplicity of solutions
    Papageorgiou, Nikolaos S.
    Qin, Dongdong
    Radulescu, Vicentiu D.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [4] Multiplicity and Concentration of Positive Solutions for Fractional Unbalanced Double-Phase Problems
    Zhang, Wen
    Zhang, Jian
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (09)
  • [5] Multiplicity and Concentration of Positive Solutions for Fractional Unbalanced Double-Phase Problems
    Wen Zhang
    Jian Zhang
    The Journal of Geometric Analysis, 2022, 32
  • [6] Fractional double-phase patterns: concentration and multiplicity of solutions
    Ambrosio, Vincenzo
    Radulescu, Vicentiu D.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 101 - 145
  • [7] Existence and Multiplicity of Solutions for a Class of Anisotropic Double Phase Problems
    Yang, Jie
    Chen, Haibo
    Liu, Senli
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [8] Ground state and nodal solutions for a class of double phase problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 71 (01):
  • [9] Ground state and nodal solutions for a class of double phase problems
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [10] Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent
    Kim, In Hyoun
    Kim, Yun-Ho
    Oh, Min Wook
    Zeng, Shengda
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67