Hyperspectral Image Denoising With Total Variation Regularization and Nonlocal Low-Rank Tensor Decomposition

被引:128
|
作者
Zhang, Hongyan [1 ]
Liu, Lu [1 ]
He, Wei [2 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Peoples R China
[2] RIKEN Ctr Adv Intelligence Project, Geoinformat Unit, Tokyo 1300027, Japan
来源
基金
中国国家自然科学基金;
关键词
Denoising; Hyperspectral image (HSI); nonlocal low-rank; spatial-spectral total variation (SSTV); tensor decomposition; SPARSE; RESTORATION; RECOVERY;
D O I
10.1109/TGRS.2019.2947333
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral images (HSIs) are normally corrupted by a mixture of various noise types, which degrades the quality of the acquired image and limits the subsequent application. In this article, we propose a novel denoising method for the HSI restoration task by combining nonlocal low-rank tensor decomposition and total variation regularization, which we refer to as TV-NLRTD. To simultaneously capture the nonlocal similarity and high spectral correlation, the HSI is first segmented into overlapping 3-D cubes that are grouped into several clusters by the $k$ -means++ algorithm and exploited by low-rank tensor approximation. Spatial-spectral total variation (SSTV) regularization is then investigated to restore the clean HSI from the denoised overlapping cubes. Meanwhile, the $\ell _{1} $ -norm facilitates the separation of the clean nonlocal low-rank tensor groups and the sparse noise. The proposed TV-NLRTD method is optimized by employing the efficient alternating direction method of multipliers (ADMM) algorithm. The experimental results obtained with both simulated and real hyperspectral data sets confirm the validity and superiority of the proposed method compared with the current state-of-the-art HSI denoising algorithms.
引用
收藏
页码:3071 / 3084
页数:14
相关论文
共 50 条
  • [1] Rank-1 Tensor Decomposition for Hyperspectral Image Denoising with Nonlocal Low-rank Regularization
    Xue, Jize
    Zhao, Yongqiang
    2017 INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT), 2017, : 40 - 45
  • [2] Nonlocal Low-Rank Regularized Tensor Decomposition for Hyperspectral Image Denoising
    Xue, Jize
    Zhao, Yongqiang
    Liao, Wenzhi
    Chan, Jonathan Cheung-Wai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 5174 - 5189
  • [3] Hyperspectral Image Denoising With Weighted Nonlocal Low-Rank Model and Adaptive Total Variation Regularization
    Chen, Yang
    Cao, Wenfei
    Pang, Li
    Cao, Xiangyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Spatial-Spectral Total Variation Regularized Low-Rank Tensor Decomposition for Hyperspectral Image Denoising
    Fan, Haiyan
    Li, Chang
    Guo, Yulan
    Kuang, Gangyao
    Ma, Jiayi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10): : 6196 - 6213
  • [5] Hyperspectral Image Denoising Based on Nonlocal Low-Rank and TV Regularization
    Kong, Xiangyang
    Zhao, Yongqiang
    Xue, Jize
    Chan, Jonathan Cheung-Wai
    Ren, Zhigang
    Huang, HaiXia
    Zang, Jiyuan
    REMOTE SENSING, 2020, 12 (12)
  • [6] Hyperspectral Image Super-Resolution via Nonlocal Low-Rank Tensor Approximation and Total Variation Regularization
    Wang, Yao
    Chen, Xi'ai
    Han, Zhi
    He, Shiying
    REMOTE SENSING, 2017, 9 (12):
  • [7] Hyperspectral Image Mixed Noise Removal via Double Factor Total Variation Nonlocal Low-Rank Tensor Regularization
    Wu, Yongjie
    Xu, Wei
    Zheng, Liangliang
    REMOTE SENSING, 2024, 16 (10)
  • [8] Hyperspectral Image Denoising With Group Sparse and Low-Rank Tensor Decomposition
    Huang, Zhihong
    Li, Shutao
    Fang, Leyuan
    Li, Huali
    Benediktsson, Jon Atli
    IEEE ACCESS, 2018, 6 : 1380 - 1390
  • [9] Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition
    Wang, Yao
    Peng, Jiangjun
    Zhao, Qian
    Leung, Yee
    Zhao, Xi-Le
    Meng, Deyu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (04) : 1227 - 1243
  • [10] Low-Rank Decomposition and Total Variation Regularization of Hyperspectral Video Sequences
    Xu, Yang
    Wu, Zebin
    Chanussot, Jocelyn
    Dalla Mura, Mauro
    Bertozzi, Andrea L.
    Wei, Zhihui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03): : 1680 - 1694