The abundance of global nickel reserve is in fact dominated by low grade laterite ores containing only approximately 1.0-1.8 %-Ni. Indonesia is a major limonite and saprolite ores source, particularly in the Sulawesi, northern Maluku, and Papua islands. Production of nickel from laterites typically requires a pre-concentration step which breaks down the mineral crystalline structure, thereby facilitating the subsequent extraction of the valuable metals. This work discusses the thermochemical analysis of the alkali roasting of an Indonesian saprolite ore using Na2CO3, Na2SO4, and NaOH. These alkali compounds are selected due to their relatively low cost. The Factsage thermochemical computation package is used to predict thermodynamically stable gaseous, solution, pure liquid, and pure solid phases present in the roasting process at temperatures from 100 to 1200 degrees C at ambient pressure, in inert atmosphere. The formation of a liquid solution (or slag) phase is interpreted as a major indicator of mineral structure breakdown. The computed slag formation temperatures are 373.2, 1041.4, and 792.0 degrees C when using Na2CO3, Na2SO4, and NaOH, respectively. The masses of volatilized alkali at 1200 degrees C with a total feed mass of 100 gram are 0.49, 3.24, and 3.25 mg for Na2CO3, Na2SO4, and NaOH, respectively. It is therefore hypothesized that Na2CO3 is the most competitive sodium-based alkali for saprolite ore roasting.