Deep learning-based anomaly detection from ultrasonic images

被引:22
|
作者
Posilovic, Luka [1 ]
Medak, Duje [1 ]
Milkovic, Fran [1 ]
Subasic, Marko [1 ]
Budimir, Marko [2 ]
Loncaric, Sven [1 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Zagreb, Croatia
[2] INETEC Inst Nucl Technol, Zagreb, Croatia
关键词
Non-destructive testing; Ultrasonic testing; Anomaly detection; Generative Adversarial Network; Deep learning;
D O I
10.1016/j.ultras.2022.106737
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Non-destructive testing is a group of methods for evaluating the integrity of components. Among them, ultrasonic inspection stands out due to its ability to visualize both shallow and deep sections of the material in the search for flaws. Testing of the critical components can be a tiring and time-consuming task. Therefore, human experts in analyzing inspection data could use a hand in discarding anomaly-free data and reviewing only suspicious data. Using such a tool, errors would be less common, inspection times would shorten and non-destructive testing would be more efficient. In this work, we evaluate multiple state-of-the-art deeplearning anomaly detection methods on the ultrasonic non-destructive testing dataset. We achieved an average performance of almost 82% of ROC AUC. We discuss in detail the advantages and disadvantages of the presented methods.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A survey of deep learning-based network anomaly detection
    Donghwoon Kwon
    Hyunjoo Kim
    Jinoh Kim
    Sang C. Suh
    Ikkyun Kim
    Kuinam J. Kim
    Cluster Computing, 2019, 22 : 949 - 961
  • [2] A survey of deep learning-based network anomaly detection
    Kwon, Donghwoon
    Kim, Hyunjoo
    Kim, Jinoh
    Suh, Sang C.
    Kim, Ikkyun
    Kim, Kuinam J.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1): : 949 - 961
  • [3] Review of Deep Learning-Based Video Anomaly Detection
    Ji G.
    Qi X.
    Wang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2024, 37 (02): : 128 - 143
  • [4] Deep Learning-based Anomaly Detection on X-Ray Images of Fuel Cell Electrodes
    Jensen, Simon B.
    Moeslund, Thomas B.
    Andreasen, Soren J.
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 323 - 330
  • [5] Deep Learning-Based Anomaly Detection in Video Surveillance: A Survey
    Duong, Huu-Thanh
    Le, Viet-Tuan
    Hoang, Vinh Truong
    SENSORS, 2023, 23 (11)
  • [6] Deep Reinforcement Learning-based Anomaly Detection for Video Surveillance
    Aberkane, Sabrina
    Elarbi-Boudihir, Mohamed
    INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2022, 46 (02): : 291 - 298
  • [7] Deep Learning-based Hybrid Model for Efficient Anomaly Detection
    Osamor, Frances
    Wellman, Briana
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (04) : 975 - 979
  • [8] Deep transfer learning-based anomaly detection for cycling safety
    Yaqoob, Shumayla
    Cafiso, Salvatore
    Morabito, Giacomo
    Pappalardo, Giuseppina
    JOURNAL OF SAFETY RESEARCH, 2023, 87 : 122 - 131
  • [9] Impact of log parsing on deep learning-based anomaly detection
    Khan, Zanis Ali
    Shin, Donghwan
    Bianculli, Domenico
    Briand, Lionel C.
    EMPIRICAL SOFTWARE ENGINEERING, 2024, 29 (06)
  • [10] Machine learning- and deep learning-based anomaly detection in firewalls: a surveyMachine learning- and deep learning-based anomaly detection...H. Dhrir et al.
    Hanen Dhrir
    Maha Charfeddine
    Nesrine Tarhouni
    Habib M. Kammoun
    The Journal of Supercomputing, 81 (6)