Synchronization in reaction-diffusion systems with multiple pacemakers

被引:6
|
作者
Nolet, F. E. [1 ]
Rombouts, J. [1 ]
Gelens, L. [1 ]
机构
[1] Univ Leuven, Dept Cellular & Mol Med, Lab Dynam Biol Syst, B-3000 Leuven, Belgium
关键词
TARGET PATTERNS; TRIGGER WAVES; OSCILLATORS; NETWORKS; DYNAMICS; MODELS;
D O I
10.1063/5.0002251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which compete with each other. In this paper, we perform a detailed numerical analysis of how wave propagation and synchronization of the medium depend on the properties of these pacemakers. We discuss the influence of the size and intrinsic frequency of pacemakers on the synchronization properties. We also study a system in which the pacemakers are embedded in a medium without any local dynamics. In this case, synchronization occurs if the coupling determined by the distance and diffusion is strong enough. The transition to synchronization is reminiscent of systems of discrete coupled oscillators.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] PHASE AND FREQUENCY SYNCHRONIZATION IN REACTION-DIFFUSION SYSTEMS
    CARTIANU, D
    REVUE ROUMAINE DE PHYSIQUE, 1985, 30 (04): : 327 - 348
  • [2] Pacemakers in a Reaction-Diffusion Mechanics System
    R. H. Keldermann
    M. P. Nash
    A. V. Panfilov
    Journal of Statistical Physics, 2007, 128 : 375 - 392
  • [3] Pacemakers in a reaction-diffusion mechanics system
    Keldermann, R. H.
    Nash, M. P.
    Panfilov, A. V.
    JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (1-2) : 375 - 392
  • [4] Synchronization of delayed coupled reaction-diffusion systems on networks
    Li, Wenxue
    Chen, Tianrui
    Xu, Dianguo
    Wang, Ke
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (11) : 2216 - 2228
  • [6] Bifurcations and Synchronization in Networks of Unstable Reaction-Diffusion Systems
    Miranville, Alain
    Cantin, Guillaume
    Aziz-Alaoui, M. A.
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (02)
  • [7] TARGET PATTERNS AND PACEMAKERS IN A REACTION-DIFFUSION SYSTEM
    NAGASHIMA, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (09) : 2797 - 2799
  • [8] Stationary multiple spots for reaction-diffusion systems
    Wei, Juncheng
    Winter, Matthias
    JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (01) : 53 - 89
  • [9] Lag synchronization in uncertain autocatalytic reaction-diffusion chaotic systems
    Lue Ling
    Li Lyan
    ACTA PHYSICA SINICA, 2009, 58 (01) : 131 - 138
  • [10] Synchronization of stochastic reaction-diffusion systems via boundary control
    Wu, Kai-Ning
    Wang, Jian
    Lim, Cheng-Chew
    NONLINEAR DYNAMICS, 2018, 94 (03) : 1763 - 1773