A Multiband/Multistandard 15-57 GHz Receive Phased-Array Module Based on 4 x 1 Beamformer IC and Supporting 5G NR FR2 Operation

被引:34
|
作者
Alhamed, Abdulrahman [1 ]
Kazan, Oguz [1 ]
Gultepe, Gokhan [1 ]
Rebeiz, Gabriel M. [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
关键词
Beamformer; data link; error vector magnitude (EVM); fifth generation (5G); flip-chip; millimeter wave (mm-wave); multiband; phased array; printed circuit board (PCB); quadrature amplitude modulation (QAM); receiver; SiGe; Vivaldi antenna; wideband; TAPERED SLOT ANTENNA; FRONT-END; TRANSCEIVER; NETWORK; LINKS; GB/S;
D O I
10.1109/TMTT.2021.3136256
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a 15-57 GHz multiband/multistandard phased-array architecture for the fifth-generation (5G) new radio (NR) frequency range 2 (FR2) bands. An eight-element phased-array receive module is demonstrated based on two four-channel wideband beamformer chips designed in the SiGe BiCMOS process and flipped on a low-cost printed circuit board. The SiGe Rx chip employs RF beamforming and is designed to interface to a wideband differential Vivaldi antenna array. Each channel consists of a low-noise amplifier (LNA), active phase shifter with 5-bit resolution, variable gain amplifier (VGA), and differential-to-single-ended stage. The four channels are combined using a wideband two-stage on-chip Wilkinson network. The beamformer has a peak electronic gain of 24-25 dB and a 4.7-6.2 dB noise figure (NF) with a -29 to -24 dBm input P im at 20-40 GHz. The eight-element phased-array module also achieved ultra-wideband frequency response with flat gain and low-system NF. The phased array scans +/- 55 degrees with <-12-dB sidelobes demonstrating multiband operation. A 1.2-m over-the-air (OTA) link measurement using the eight-element Rx module supports 400-MHz 256-QAM OFDMA modulation with <2.76% error vector magnitude (EVM) at multiple 5G NR FR2 hands. To the author's knowledge, this work achieves the widest bandwidth phased array enabling the construction of multistandard systems.
引用
收藏
页码:1732 / 1744
页数:13
相关论文
共 14 条
  • [1] An Eight-Channel 15-55 GHz Dual-Beam Receive Phased-Array Beamformer IC With 2.9-4.2 dB NF for Multiband 5G Operation
    Hassan, Omar
    Mahmud, Mir
    Li, Linjie
    Alhamed, Abdulrahman
    Rebeiz, Gabriel M.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2025, 73 (01) : 661 - 673
  • [2] 64-Element 16-52-GHz Transmit and Receive Phased Arrays for Multiband 5G-NR FR2 Operation
    Alhamed, Abdulrahman
    Gultepe, Gokhan
    Rebeiz, Gabriel M.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (01) : 360 - 372
  • [3] A Multi-Standard 15-57 GHz 4-Channel Receive Beamformer with 4.8 dB Midband NF for 5G Applications
    Alhamed, Abdulrahman A.
    Kazan, Oguz
    Rebeiz, Gabriel M.
    PROCEEDINGS OF THE 2020 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2020, : 1011 - 1014
  • [4] A Multi-Band 16-52-GHz Transmit Phased Array Employing 4 x 1 Beamforming IC With 14-15.4-dBm $P_{ sat}$ for 5G NR FR2 Operation
    Alhamed, Abdulrahman
    Gultepe, Gokhan
    Rebeiz, Gabriel M.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (05) : 1280 - 1290
  • [5] A 28-GHz CMOS Phased-Array Beamformer Utilizing Neutralized Bi-Directional Technique Supporting Dual-Polarized MIMO for 5G NR
    Pang, Jian
    Li, Zheng
    Kubozoe, Ryo
    Luo, Xueting
    Wu, Rui
    Wang, Yun
    You, Dongwon
    Fadila, Ashbir Aviat
    Saengchan, Rattanan
    Nakamura, Takeshi
    Alvin, Joshua
    Matsumoto, Daiki
    Liu, Bangan
    Narayanan, Aravind Tharayil
    Qiu, Junjun
    Liu, Hanli
    Sun, Zheng
    Huang, Hongye
    Tokgoz, Korkut Kaan
    Motoi, Keiichi
    Oshima, Naoki
    Hori, Shinichi
    Kunihiro, Kazuaki
    Kaneko, Tomoya
    Shirane, Atsushi
    Okada, Kenichi
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (09) : 2371 - 2386
  • [6] A 28GHz CMOS Phased-Array Beamformer Utilizing Neutralized Bi-Directional Technique Supporting Dual-Polarized MIMO for 5G NR
    Pang, Jian
    Li, Zheng
    Kubozoe, Ryo
    Luo, Xueting
    Wu, Rui
    Wang, Yun
    You, Dongwon
    Fadila, Ashbir Aviat
    Saengchan, Rattanan
    Nakamura, Takeshi
    Alvin, Joshua
    Matsumoto, Daiki
    Narayanan, Aravind Tharayil
    Liu, Bangan
    Qiu, Junjun
    Liu, Hanli
    Sun, Zheng
    Huang, Hongye
    Tokgoz, Korkut Kaan
    Motoi, Keiichi
    Oshima, Naoki
    Hori, Shinichi
    Kunihiro, Kazuaki
    Kaneko, Tomoya
    Shirane, Atsushi
    Okada, Kenichi
    2019 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2019, 62 : 344 - U1846
  • [7] A 45 nm RFSOI CMOS-based 24.25-29.5 GHz 2x16-Channel Phased-Array Transceiver IC for 5G NR Applications
    Lee, Jooseok
    Baek, Seungjae
    Kim, Kihyun
    Park, Seungwon
    Oh, Hansik
    Kim, Taewan
    Jung, Joonho
    Kim, Jinhyun
    Jeon, Sehyug
    Park, Jee Ho
    Lee, Woojae
    Park, Jaehong
    Lee, Dong-hyun
    Lee, Sangho
    Lee, Jeong Ho
    Kim, Ji Hoon
    Kim, Younghwan
    Park, Sangyong
    Suh, Bohee
    Oh, Soyoung
    Lee, Dongsoo
    Son, Juho
    Yang, Sung-gi
    2024 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM, RFIC 2024, 2024, : 47 - 50
  • [8] A Global Multi-Standard/Multi-Band 17.1-52.4 GHz Tx Phased Array Beamformer with 14.8 dBm OP1dB Supporting 5G NR FR2 Bands with Multi-Gb/s 64-QAM for Massive MIMO Arrays
    Alhamed, Abdulrahman A.
    Rebeiz, Gabriel M.
    2021 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM (RFIC), 2021, : 99 - 102
  • [9] A 24-to 28-GHz 4x1 MIMO Transmitter/Receiver for 5G Phased-Array Applications With High Amplitude and Phase Control
    Ozboz, Serafettin Serhan
    Burak, Abdurrahman
    Ozkan, Tahsin Alper
    Kandis, Hamza
    Gungor, Berke
    Ozdol, Ali Bahadir
    Kalyoncu, Ilker
    Gurbuz, Yasar
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2024,
  • [10] A 24-30 GHz 8-element dual-polarized 5G FR2 phased-array transceiver IC with 20.8-dBm TX OP1dB and 4.1-dB RX NF in 65-nm CMOS
    Yongran Yi
    Dixian Zhao
    Jiajun Zhang
    Peng Gu
    Chenyu Xu
    Yuan Chai
    Huiqi Liu
    Xiaohu You
    Journal of Semiconductors, 2024, 45 (01) : 28 - 39