Investigating the Calculation of Rotational Viscosity of the Mixture Comprising Different Kinds of Liquid Crystals: Molecular Dynamics Computer Simulation Approach

被引:3
|
作者
Kim, Jinsoo [1 ]
Jamil, Muhammad [2 ]
Jung, Jae Eun [3 ]
Jang, Jae Eun [3 ]
Farzana, Ahmad [1 ]
Jin, Woo Lee [1 ]
Sang, Woo Park [1 ]
Woo, Min-Kyung [1 ]
Kwak, Ji Yeon [1 ]
Jeon, Young-Jae [1 ]
机构
[1] Konkuk Univ, Dept Chem, Liquid Crystal Res Ctr, Seoul 143701, South Korea
[2] Konkuk Univ, Div Int Affairs, Univ Coll, Seoul 143701, South Korea
[3] SAID, Yongin 446712, Gyeonggi Do, South Korea
关键词
liquid crystal mixture; ab initio calculations; rotational viscosity; generalized AMBER force field (GAFF); molecular dynamics simulation; nematic liquid crystals; computer simulation;
D O I
10.1002/cjoc.201190059
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular dynamics (MD) computer simulation techniques, as a powerful tool commonly utilized by the liquid crystal display (LCD) community, usually are employed for computing the equilibrium and transport properties of a classical many body system, since they are very similar to real experiments in many respects. In this paper we present molecular dynamics computer simulation results taken for a mixture of the two different kinds of nematic liquid crystals (LCs). We calculated rotational viscosity from Brownian behavior with friction of the mean director of the mixture comprising pentylcyanobiphenol (5CB) and decylcyanobiphenol (10CB) by using molecular dynamics computer simulation, where intermolecular potential parameter is Generalized AMBER force field (GAFF). Our computed results show a good agreement with the experimental results.
引用
收藏
页码:48 / 52
页数:5
相关论文
共 14 条
  • [1] Rotational viscosity calculation method for liquid crystal mixture using molecular dynamics
    Kim, J. -S.
    Jamil, M.
    Jung, J. E.
    Jang, J. E.
    Lee, J. W.
    Ahmad, F.
    Woo, M. -K.
    Kwak, J. Y.
    Jeon, Y. J.
    JOURNAL OF INFORMATION DISPLAY, 2011, 12 (03) : 135 - 139
  • [2] Computing the rotational viscosity of nematic liquid crystals by an atomistic molecular dynamics simulation
    Kuwajima, S
    Manabe, A
    CHEMICAL PHYSICS LETTERS, 2000, 332 (1-2) : 105 - 109
  • [3] Rotational viscosity in liquid crystals: A molecular dynamics study
    Capar, MI
    Cebe, E
    CHEMICAL PHYSICS LETTERS, 2005, 407 (4-6) : 454 - 459
  • [4] Rotational viscosity comparison of liquid crystals based on the molecular dynamics of mixtures
    Wang Qi-Dong
    Peng Zeng-Hui
    Liu Yong-Gang
    Yao Li-Shuang
    Ren Gan
    Xuan Li
    ACTA PHYSICA SINICA, 2015, 64 (12)
  • [5] Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study
    Zhang Ran
    Peng Zeng-Hui
    Liu Yong-Gang
    Zheng Zhi-Gang
    Xuan Li
    CHINESE PHYSICS B, 2009, 18 (10) : 4380 - 4385
  • [6] Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study
    张然
    彭增辉
    刘永刚
    郑致刚
    宣丽
    Chinese Physics B, 2009, (10) : 4380 - 4385
  • [7] Rotational viscosity in a nematic liquid crystal: A theoretical treatment and molecular dynamics simulation
    Zakharov, AV
    Komolkin, AV
    Maliniak, A
    PHYSICAL REVIEW E, 1999, 59 (06): : 6802 - 6807
  • [8] Evaluation of phase state and rotational viscosity of fast response liquid crystals using a fully atomistic molecular dynamics
    Wang, Qidong
    Zhang, Guiyang
    Liu, Yonggang
    Yao, Lishuang
    Li, Dayu
    Wang, Shaoxin
    Cao, Zhaoliang
    Mu, Quanquan
    Yang, Chengliang
    Xuan, Li
    Lu, Xinghai
    Peng, Zenghui
    LIQUID CRYSTALS, 2018, 45 (01) : 129 - 135
  • [9] Electro- and magneto-rheology of nematic liquid crystals: Experiment and nonequilibrium molecular dynamics computer simulation
    Eich, A
    Wolf, BA
    Bennett, L
    Hess, S
    JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (09): : 3829 - 3838
  • [10] Interfacial anisotropy in the transport of liquid crystals confined between flat, structureless walls: A molecular dynamics simulation approach
    Mima, Toshiki
    Yasuoka, Kenji
    PHYSICAL REVIEW E, 2008, 77 (01)