Lyapunov methods in nonsmooth optimization, Part I: Quasi-Newton algorithms for Lipschitz, regular functions

被引:0
|
作者
Teel, AR [1 ]
机构
[1] Univ Calif Santa Barbara, ECE Dept, Santa Barbara, CA 93106 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A recent converse Lyapunov theorem for differential inclusions is used to generate a large class of algorithms for nonsmooth optimization. Particular attention is given to quasi-Newton algorithms for the minimization of locally Lipschitz, regular functions.
引用
收藏
页码:110 / 117
页数:8
相关论文
共 50 条
  • [1] Nonsmooth optimization via quasi-Newton methods
    Adrian S. Lewis
    Michael L. Overton
    Mathematical Programming, 2013, 141 : 135 - 163
  • [2] Nonsmooth optimization via quasi-Newton methods
    Lewis, Adrian S.
    Overton, Michael L.
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 135 - 163
  • [3] Forward–backward quasi-Newton methods for nonsmooth optimization problems
    Lorenzo Stella
    Andreas Themelis
    Panagiotis Patrinos
    Computational Optimization and Applications, 2017, 67 : 443 - 487
  • [4] Nonsmooth multiobjective programming with quasi-Newton methods
    Qu, Shaojian
    Liu, Chen
    Goh, Mark
    Li, Yijun
    Ji, Ying
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 235 (03) : 503 - 510
  • [5] On the convergence of quasi-Newton methods for nonsmooth problems
    Lopes, VLR
    Martinez, JM
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1995, 16 (9-10) : 1193 - 1209
  • [6] A Survey of Quasi-Newton Equations and Quasi-Newton Methods for Optimization
    Chengxian Xu
    Jianzhong Zhang
    Annals of Operations Research, 2001, 103 : 213 - 234
  • [7] Forward-backward quasi-Newton methods for nonsmooth optimization problems
    Stella, Lorenzo
    Themelis, Andreas
    Patrinos, Panagiotis
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 67 (03) : 443 - 487
  • [8] Survey of quasi-Newton equations and quasi-Newton methods for optimization
    Xu, CX
    Zhang, JZ
    ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 213 - 234
  • [10] On the Convergence Rate of Quasi-Newton Methods on Strongly Convex Functions with Lipschitz Gradient
    Krutikov, Vladimir
    Tovbis, Elena
    Stanimirovic, Predrag
    Kazakovtsev, Lev
    MATHEMATICS, 2023, 11 (23)