Stochastic Heat Equation with Multiplicative Fractional-Colored Noise

被引:40
|
作者
Balan, Raluca M. [1 ]
Tudor, Ciprian A. [2 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[2] Univ Paris 01, SAMOS MATISSE, Ctr Econ La Sorbonne, F-75634 Paris 13, France
基金
加拿大自然科学与工程研究理事会;
关键词
Stochastic heat equation; Gaussian noise; Multiple stochastic integrals; Chaos expansion; Skorohod integral; Fractional Brownian motion; Local time; DIFFERENTIAL-EQUATIONS; EVOLUTION-EQUATIONS; WAVE-EQUATION; DRIVEN;
D O I
10.1007/s10959-009-0237-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the stochastic heat equation with multiplicative noise u(t) = 1/2 Delta u + u(W) over dot in R+ x R-d, whose solution is interpreted in the mild sense. The noise (W) over dot is fractional in time (with Hurst index H >= 1/2), and colored in space (with spatial covariance kernel f). When H > 1/2, the equation generalizes the Ito-sense equation for H = 1/2. We prove that if f is the Riesz kernel of order alpha, or the Bessel kernel of order alpha < d, then the sufficient condition for the existence of the solution is d <= 2 + alpha (if H > 1/2), respectively d < 2 + alpha (if H = 1/2), whereas if f is the heat kernel or the Poisson kernel, then the equation has a solution for any d. We give a representation of the kth order moment of the solution in terms of an exponential moment of the "convoluted weighted" intersection local time of k independent d-dimensional Brownian motions.
引用
收藏
页码:834 / 870
页数:37
相关论文
共 50 条