Joint NC-ARQ and AMC for QoS-Guaranteed Mobile Multicast

被引:1
|
作者
Wang, Haibo [1 ]
Schwefel, Hans-Peter [2 ,3 ]
Chu, Xiaoli [4 ]
Toftegaard, Thomas Skjodeberg [5 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Univ Aalborg, Dept Commun Technol, A-1220 Vienna, Austria
[3] Telecommun Res Ctr Vienna FTW, A-1220 Vienna, Austria
[4] Kings Coll London, Dept Elect Engn, London WC2R 2LS, England
[5] Aarhus Univ, Dept Comp Sci, DK-8000 Aarhus, Denmark
基金
英国工程与自然科学研究理事会;
关键词
Fading Channel; Spectral Efficiency; Optimal Form; Rayleigh Fading Channel; Adaptive Modulation;
D O I
10.1155/2010/807691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In mobile multicast transmissions, the receiver with the worst instantaneous channel condition limits the transmission data rate under the desired Quality-of-Service (QoS) constraints. If Automatic Repeat reQuest (ARQ) schemes are applied, the selection of Adaptive Modulation and Coding (AMC) mode will not necessarily be limited by the worst channel anymore, and improved spectral efficiency may be obtained in the efficiency-reliability tradeoff. In this paper, we first propose a Network-Coding-based ARQ (NC-ARQ) scheme in its optimal form and suboptimal form (denoted as Opt-ARQ and SubOpt-ARQ, resp.) to solve the scalability problem of applying ARQ in multicast. Then we propose two joint NC-ARQ-AMC schemes, namely, the Average PER-based AMC (AvgPER-AMC) with Opt-ARQ and AvgPER-AMC with SubOpt-ARQ in a cross-layer design framework to maximize the average spectral efficiency per receiver under specific QoS constraints. The performance is analyzed under Rayleigh fading channels for different group sizes, and numerical results show that significant gains in spectral efficiency can be achieved with the proposed joint NC-ARQ-AMC schemes compared with the existing multicast ARQ and/or AMC schemes.
引用
收藏
页数:8
相关论文
共 35 条
  • [1] Joint NC-ARQ and AMC for QoS-Guaranteed Mobile Multicast
    Haibo Wang
    Hans-Peter Schwefel
    Xiaoli Chu
    Thomas Skjødeberg Toftegaard
    EURASIP Journal on Wireless Communications and Networking, 2010
  • [2] QROUTE: an QoS-guaranteed multicast routing
    Dai, JQ
    Angchuan, T
    Pung, HK
    COMPUTER COMMUNICATIONS, 2004, 27 (02) : 171 - 186
  • [3] A QoS-guaranteed multicast routing protocol
    Li, L
    Li, C
    COMPUTER COMMUNICATIONS, 2004, 27 (01) : 59 - 69
  • [4] QROUTE: An integrated framework for QoS-guaranteed multicast
    Dai, JQ
    Pung, HK
    Angchuan, T
    LCN 2002: 27TH ANNUAL IEEE CONFERENCE ON LOCAL COMPUTER NETWORKS, PROCEEDINGS, 2002, : 90 - 99
  • [5] A fault recovery mechanism for a QoS-guaranteed multicast routing protocol
    Peng, B
    Pung, HK
    2004 12TH IEEE INTERNATIONAL CONFERENCE ON NETWORKS, VOLS 1 AND 2 , PROCEEDINGS: UNITY IN DIVERSITY, 2004, : 694 - 700
  • [6] Fanout Set Partition Scheme for QoS-Guaranteed Multicast Transmission
    Kim, Kyungmin
    Kong, Seokhwan
    Lee, Jaiyong
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2013, E96B (12) : 3080 - 3090
  • [7] QoS-Guaranteed Cross-Layer Design for Joint Adaptive Modulation and Coding, Power Control, and ARQ Protocol
    Selmi, Asma
    Siala, Mohamed
    Boujemaa, Hatem
    2016 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2016, : 846 - 851
  • [8] Authenticating QoS-guaranteed multicast route discovery for ad hoc networks
    Mingxi, Yang
    Layuan, Li
    Yiwei, Fang
    CHINA COMMUNICATIONS, 2007, 4 (01) : 48 - 55
  • [9] Authenticating QoS-Guaranteed Multicast Route Discovery for Ad hoc Networks
    Yang Mingxi~1
    中国通信, 2007, 4 (01) : 48 - 55
  • [10] Analyzing and optimizing adaptive modulation coding jointly with ARQ for QoS-guaranteed traffic
    Wang, Xin
    Liu, Qingwen
    Giannakis, Georgios B.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2007, 56 (02) : 710 - 720