Implementation of a Clustering-Based LDDoS Detection Method

被引:2
|
作者
Hussain, Tariq [1 ]
Saeed, Muhammad Irfan [2 ]
Khan, Irfan Ullah [3 ]
Aslam, Nida [4 ]
Aljameel, Sumayh S. [3 ]
机构
[1] Zhejiang Gongshang Univ, Sch Comp Sci & Informat Engn, Hangzhou 310018, Peoples R China
[2] Northeastern Univ, Software Coll, Shenyang 110819, Peoples R China
[3] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Dept Comp Sci, POB 1982, Dammam 31441, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Coll Comp Sci & Informat Technol, Saudi Aramco Cybersecur Chair, POB 1982, Dammam 31441, Saudi Arabia
关键词
low-rate distributed DoS (LDDoS) attacks; attacks detection; two-step clustering; outliers detection; ATTACKS;
D O I
10.3390/electronics11182804
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid advancement and transformation of technology, information and communication technologies (ICT), in particular, have attracted everyone's attention. The attackers took advantage of this and can caused serious problems, such as malware attack, ransomware, SQL injection attack, etc. One of the dominant attacks, known as distributed denial-of-service (DDoS), has been observed as the main reason for information hacking. In this paper, we have proposed a secure technique, called the low-rate distributed denial-of-service (LDDoS) technique, to measure attack penetration and secure communication flow. A two-step clustering method was adopted, where the network traffic was controlled by using the characteristics of TCP traffic with discrete sense; then, the suspicious cluster with the abnormal analysis was detected. This method has proven to be reliable and efficient for LDDoS attacks detection, based on the NS-2 simulator, compared to the exponentially weighted moving average (EWMA) technique, which has comparatively very high false-positive rates. Analyzing abnormal test pieces helps us reduce the false positives. The proposed methodology was implemented using Python for scripting and NS-2 simulator for topology, two public trademark datasets, i.e., Web of Information for Development (WIDE) and Lawrence Berkley National Laboratory (LBNL), were selected for experiments. The experiments were analyzed, and the results evaluated using Wireshark. The proposed LDDoS approach achieved good results, compared to the previous techniques.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Clustering-Based Outlier Detection Method
    Jiang, Sheng-yi
    An, Qing-bo
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 429 - 433
  • [3] An improved unsupervised clustering-based intrusion detection method
    Hai, YJ
    Wu, Y
    Wang, GY
    Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005, 2005, 5812 : 52 - 60
  • [4] A Clustering-Based Method for Intrusion Detection in Web Servers
    Pereira, Hermano
    Jamhour, Edgard
    2013 20TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), 2013,
  • [5] A Hybrid Unsupervised Clustering-Based Anomaly Detection Method
    Guo Pu
    Lijuan Wang
    Jun Shen
    Fang Dong
    Tsinghua Science and Technology, 2021, 26 (02) : 146 - 153
  • [6] A Hybrid Unsupervised Clustering-Based Anomaly Detection Method
    Pu, Guo
    Wang, Lijuan
    Shen, Jun
    Dong, Fang
    TSINGHUA SCIENCE AND TECHNOLOGY, 2021, 26 (02) : 146 - 153
  • [7] A clustering-based method for outlier detection under concept drift
    Tahir, Mahjabeen
    Abdullah, Azizol
    Udzir, Nur Izura
    Kasmiran, Khairul Azhar
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2024, 43 (03) : 205 - 218
  • [8] A Clustering-Based Method to Anomaly Detection in Thermal Power Plants
    Drapal, Patricia
    Clemente, Jullya
    Reyes, Dailys Maite
    de Souza, Starch Melo
    Lins, Anthony
    Prudencio, Ricardo B. C.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [9] CLUSTERING-BASED NETWORK INTRUSION DETECTION
    Zhong, Shi
    Khoshgoftaar, Taghi M.
    Seliya, Naeem
    INTERNATIONAL JOURNAL OF RELIABILITY QUALITY AND SAFETY ENGINEERING, 2007, 14 (02) : 169 - 187
  • [10] Clustering-Based Trajectory Outlier Detection
    Eldawy, Eman O.
    Mokhtar, Hoda M. O.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (05) : 133 - 139