Scalable HPC & AI Infrastructure for COVID-19 Therapeutics

被引:3
|
作者
Lee, Hyungro [1 ]
Merzky, Andre [1 ]
Tan, Li [2 ]
Titov, Mikhail [1 ]
Turilli, Matteo [1 ]
Alfe, Dario [3 ]
Bhati, Agastya [3 ]
Brace, Alex [4 ]
Clyde, Austin [5 ]
Coveney, Peter [3 ]
Ma, Heng [4 ]
Ramanathan, Arvind [4 ]
Stevens, Rick [5 ]
Trifan, Anda [6 ]
Van Dam, Hubertus [2 ]
Wan, Shunzhou [3 ]
Wilkinson, Sean [7 ]
Jha, Shantenu [1 ,2 ]
机构
[1] Rutgers State Univ, Piscataway, NJ 08854 USA
[2] Brookhaven Natl Lab, Upton, NY 11973 USA
[3] UCL, London, England
[4] Argonne Natl Lab, Lemont, IL USA
[5] Univ Chicago, Chicago, IL 60637 USA
[6] Univ Illinois, Champaign, IL USA
[7] Oak Ridge Natl Lab, Knoxville, TN USA
基金
美国能源部; 欧盟地平线“2020”;
关键词
high-performance computing; machine learning; workflows; docking molecular dynamics; free energy estimation; COVID-19; FREE-ENERGY; PREDICTION;
D O I
10.1145/3468267.3470573
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
COVID-19 has claimed more than 2.7 x 10(6) lives and resulted in over 124 x 10(6) infections. There is an urgent need to identify drugs that can inhibit SARS-CoV-2. We discuss innovations in computational infrastructure and methods that are accelerating and advancing drug design. Specifically, we describe several methods that integrate artificial intelligence and simulation-based approaches, and the design of computational infrastructure to support these methods at scale. We discuss their implementation, characterize their performance, and highlight science advances that these capabilities have enabled.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Overview of HPC and AI Computing for COVID-19 in the US
    Stevens, Rick L.
    PACT '20: PROCEEDINGS OF THE ACM INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, 2020, : 1 - 1
  • [2] Fighting COVID-19 with HPC
    不详
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (12): : 769 - 770
  • [3] Fighting COVID-19 with HPC
    Nature Computational Science, 2021, 1 : 769 - 770
  • [4] Therapeutics for COVID-19
    Toussi, Sima S.
    Hammond, Jennifer L.
    Gerstenberger, Brian S.
    Anderson, Annaliesa S.
    NATURE MICROBIOLOGY, 2023, 8 (05) : 771 - 786
  • [5] COVID-19 therapeutics
    Focosi, Daniele
    Franchini, Massimo
    Maggi, Fabrizio
    Shoham, Shmuel
    CLINICAL MICROBIOLOGY REVIEWS, 2024, 37 (02) : e0011923
  • [6] Therapeutics for COVID-19
    Sima S. Toussi
    Jennifer L. Hammond
    Brian S. Gerstenberger
    Annaliesa S. Anderson
    Nature Microbiology, 2023, 8 : 771 - 786
  • [7] The Convergence of HPC, AI and Big Data in Rapid-Response to the COVID-19 Pandemic
    Sukumar, Sreenivas R.
    Balma, Jacob A.
    Rickett, Christopher D.
    Maschhoff, Kristyn J.
    Landman, Joseph
    Yates, Charles R.
    Chittiboyina, Amar G.
    Peterson, Yuri K.
    Vose, Aaron
    Byler, Kendall
    Baudry, Jerome
    Khan, Ikhlas A.
    DRIVING SCIENTIFIC AND ENGINEERING DISCOVERIES THROUGH THE INTEGRATION OF EXPERIMENT, BIG DATA, AND MODELING AND SIMULATION, 2022, 1512 : 157 - 172
  • [8] COVID-19 and AI
    Narayan, Mahesh
    CHEMICAL & ENGINEERING NEWS, 2021, 99 (37) : 3 - 3
  • [9] AI & COVID-19
    Bacciu, Davide
    Girardi, Emanuela
    Maratea, Marco
    Sousa, Jose
    INTELLIGENZA ARTIFICIALE, 2021, 15 (02) : 45 - 53
  • [10] COVID-19: Vaccines and therapeutics
    Ponnampalli, Swapna
    Birudukota, Naga Venkata Suryanarayana
    Kamal, Ahmed
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2022, 75