Base multiplicity in compact and generalized compact spaces

被引:5
|
作者
Balogh, Z [1 ]
Gruenhage, G
机构
[1] Miami Univ, Dept Math, Oxford, OH 45056 USA
[2] Auburn Univ, Dept Math, Auburn, AL 36849 USA
关键词
point countable; omega-in-countable; compact;
D O I
10.1016/S0166-8641(00)00066-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a compact Hausdorff space is metrizable if it has a base B such that every countably infinite subset of X is contained in at most countably many members of B. We show that the same statement for countably compact spaces is consistent with and independent of ZFC. These results answer questions stated by Arhangel'skii et al. [Topology Appl. 100 (2000) 39-46]. We prove some strenthenings of these theorems. We also consider generalizations of our results to higher cardinalities as well as to wider classes of spaces. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:139 / 151
页数:13
相关论文
共 50 条
  • [1] On the multiplicity of jigsawed bases in compact and countably compact spaces
    Balogh, Z
    Griesmer, J
    TOPOLOGY AND ITS APPLICATIONS, 2003, 130 (01) : 65 - 73
  • [2] On spaces with a π-base with elements with compact closure
    Bella, Angelo
    Carlson, Nathan
    Gotchev, Ivan S.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (01)
  • [3] Compact spaces with a P-base
    Dow, Alan
    Feng, Ziqin
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (04): : 777 - 791
  • [4] On Some Generalized Countably Compact Spaces Ⅱ
    Erguang YANG
    Journal of Mathematical Research with Applications, 2021, 41 (04) : 416 - 424
  • [5] Compact Operators on Generalized Fibonacci Spaces
    Ilkhan, Merve
    Usta, Fuat
    Kara, Emrah Evren
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [6] On Some Generalized Countably Compact Spaces
    Erguang YANG
    JournalofMathematicalResearchwithApplications, 2019, 39 (05) : 540 - 550
  • [7] GENERALIZED HOMOLOGY ON COMPACT METRIC SPACES
    KAHN, DS
    KAMINKER, J
    SCHOCHET, C
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A190 - A190
  • [8] On generalized fuzzy soft compact spaces
    Khedr, F. H.
    Abd Allah, M. A.
    Abd El-Baki, S. A.
    Malfi, M. S.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 659 - 671
  • [9] PRODUCTS OF BASE-κ-PARACOMPACT SPACES AND COMPACT SPACES
    Mou, Lei
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (03) : 387 - 392
  • [10] COMPACT COMPOSITION OPERATORS ON GENERALIZED LIPSCHITZ SPACES
    Dai Jineng
    Ouyang Caiheng
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1347 - 1356