Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries

被引:1
|
作者
Huang Wei [1 ]
Wu Chun-Yang [1 ]
Zeng Yue-Wu [1 ]
Jin Chuan-Hong [1 ]
Zhang Ze [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium ion battery; P2-type layer-structured cathode material; Surface reconstruction; Scanning transmission electron microscopy; CATHODE MATERIALS; ENERGY-STORAGE; LAYERED OXIDES; NA BATTERIES; LITHIUM; LI; VISUALIZATION; PERFORMANCE; NICKEL;
D O I
10.3866/PKU.WHXB2016032802
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We performed an aberration-corrected scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDS) study of Na0.66Mn0.675Ni0.1625Co0.1625O2, which was prepared via a solid-state reaction for sodium-ion battery applications. Powder X-ray diffraction (XRD) showed that the material had a well-crystallized P2-type layered structure (P6(3)/mmc). Results from further STEM and EDS analyses showed the presence of reconstructed surface layers of thickness about 1-2 nm, which contained a large amount of antisite defects and obvious lattice distortions. Detailed chemical analysis showed an inhomogeneous elemental distribution inside these reconstructed surface layers; they were cobalt rich and nickel deficient. These surface layers further evolved into thicker regions of width 5-10 nm, accompanied by a spinel (Fd (3) over barm) phase to rocksalt phase (Fm (3) over barm) transition.
引用
收藏
页码:1489 / 1494
页数:6
相关论文
共 31 条
  • [1] Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
  • [2] First Evidence of Manganese-Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries
    Boulineau, Adrien
    Simonin, Loic
    Colin, Jean-Francois
    Bourbon, Carole
    Patoux, Sebastien
    [J]. NANO LETTERS, 2013, 13 (08) : 3857 - 3863
  • [3] Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy
    Boulineau, Adrien
    Simonin, Loic
    Colin, Jean-Francois
    Canevet, Emmanuel
    Daniel, Lise
    Patoux, Sebastien
    [J]. CHEMISTRY OF MATERIALS, 2012, 24 (18) : 3558 - 3566
  • [4] ATOMIC-RESOLUTION CHEMICAL-ANALYSIS USING A SCANNING-TRANSMISSION ELECTRON-MICROSCOPE
    BROWNING, ND
    CHISHOLM, MF
    PENNYCOOK, SJ
    [J]. NATURE, 1993, 366 (6451) : 143 - 146
  • [5] In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries
    Chen Cheng-Cheng
    Zhang Ning
    Liu Yong-Chang
    Wang Yi-Jing
    Chen Jun
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (01) : 349 - 355
  • [6] Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries
    Chen, Xiaoqing
    Zhou, Xianlong
    Hu, Meng
    Liang, Jing
    Wu, Dihua
    Wei, Jinping
    Zhou, Zhen
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (41) : 20708 - 20714
  • [7] P2-NaxMn1/2Fe1/2O2 Phase Used as Positive Electrode in Na Batteries: Structural Changes Induced by the Electrochemical (De)intercalation Process
    de Boisse, Benoit Mortemard
    Carlier, Dany
    Guignard, Marie
    Bourgeois, Lydie
    Delmas, Claude
    [J]. INORGANIC CHEMISTRY, 2014, 53 (20) : 11197 - 11205
  • [8] STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES
    DELMAS, C
    FOUASSIER, C
    HAGENMULLER, P
    [J]. PHYSICA B & C, 1980, 99 (1-4): : 81 - 85
  • [9] Electrical Energy Storage for the Grid: A Battery of Choices
    Dunn, Bruce
    Kamath, Haresh
    Tarascon, Jean-Marie
    [J]. SCIENCE, 2011, 334 (6058) : 928 - 935
  • [10] Imaging of jasmonic acid binding sites in tissue
    Gao, Yan Hong
    Yu, Ying
    Hu, Xiao Gang
    Cao, Yu Juan
    Wu, Jian Zhong
    [J]. ANALYTICAL BIOCHEMISTRY, 2013, 440 (02) : 205 - 211