Unsupervised anomaly detection of the gas turbine operation via convolutional auto-encoder

被引:11
|
作者
Lee, Geunbae [1 ]
Jung, Myungkyo [1 ]
Song, Myoungwoo [1 ]
Choo, Jaegul [2 ]
机构
[1] Korea Univ, Grad Sch Comp & Informat Technol, Seoul, South Korea
[2] Korea Adv Inst Sci & Technol, Grad Sch Artificial Intelligence, Daejeon, South Korea
关键词
gas turbine; anomaly detection; convolution; auto-encoder; deep learning; machine learning; unsupervised learning; OUTLIER DETECTION;
D O I
10.1109/ICPHM49022.2020.9187054
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a combination of convolutional neural network and auto-encoder (CAE) for unsupervised anomaly detection of industrial gas turbines. Autonomous monitoring systems protect the gas turbines, with the settings unchanged in their lifetime. Those systems can not detect any abnormal operation patterns which potentially risk the equipment after long-term exposure. Recently, machine learning and deep learning models are applied for industries to detect those anomalies under the nominal working range. However, for gas turbine protection, not much deep learning (DL) models are introduced. The proposed CAE detects irregular signals in unsupervised learning by combining a convolutional neural network (CNN) and auto-encoder (AE). CNN exponentially reduces the computational cost and decrease the amount of training data, by its extraction capabilities of essential features in spatial input data. A CAE identifies the anomalies by adapting characteristics of an AE, which identifies any errors larger than usual pre-trained, reconstructed errors. Using the Keras library, we developed an AE structure in one-dimensional convolution layer networks. We used actual plant operation data set for performance evaluation with conventional machine learning (ML) models. Compared to the isolation forest (iforest), k- means clustering ( k- means), and one-class support vector machine (OCSVM), our model accurately predicts unusual signal patterns identified in the actual operation than conventional ML models.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A re-optimized deep auto-encoder for gas turbine unsupervised anomaly detection
    Fu, Song
    Zhong, Shisheng
    Lin, Lin
    Zhao, Minghang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 101
  • [2] Unsupervised Anomaly Detection in Flight Data Using Convolutional Variational Auto-Encoder
    Memarzadeh, Milad
    Matthews, Bryan
    Avrekh, Ilya
    AEROSPACE, 2020, 7 (08)
  • [3] Bridge anomaly detection based on reconstruction error and structural similarity of unsupervised convolutional auto-encoder
    Teng, Shuai
    Liu, Zongchao
    Luo, Wenjun
    Chen, Gongfa
    Cheng, Li
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2221 - 2237
  • [4] Anomaly detection method based on convolutional variational auto-encoder
    Yu X.
    Xu M.
    Wang Y.
    Wang S.
    Hu N.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2021, 42 (05): : 151 - 158
  • [5] Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications
    Xu, Haowen
    Chen, Wenxiao
    Zhao, Nengwen
    Li, Zeyan
    Bu, Jiahao
    Li, Zhihan
    Liu, Ying
    Zhao, Youjian
    Pei, Dan
    Feng, Yang
    Chen, Jie
    Wang, Zhaogang
    Qiao, Honglin
    WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 187 - 196
  • [6] A Convolutional Auto-encoder Method for Anomaly Detection on System Logs
    Cui, Yu
    Sun, Yiping
    Hu, Jinglu
    Sheng, Gehao
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 3057 - 3062
  • [7] Texture and semantic convolutional auto-encoder for anomaly detection and segmentation
    Luo, Jintao
    Gao, Can
    Wan, Da
    Shen, Linlin
    IET COMPUTER VISION, 2023, 17 (07) : 829 - 843
  • [8] Unsupervised Anomaly Detection for Electric Drives Based on Variational Auto-Encoder
    Shim, Jaehoon
    Lim, Gyu Cheol
    Ha, Jung-Ik
    2022 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, APEC, 2022, : 1703 - 1708
  • [9] AEKD: Unsupervised auto-encoder knowledge distillation for industrial anomaly detection
    Wu, Qiangwei
    Li, Hui
    Tian, Chenyu
    Wen, Long
    Li, Xinyu
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 73 : 159 - 169
  • [10] UNSUPERVISED ANOMALY DETECTION FOR CONTAINER CLOUD VIA BILSTM-BASED VARIATIONAL AUTO-ENCODER
    Wang, Yulong
    Chen, Xingshu
    Wang, Qixu
    Yang, Run
    Xin, Bangzhou
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3024 - 3028