Analysis of GMM by a Gaussian Wavelet transform

被引:2
|
作者
Tsukakoshi, Kiyoshi [1 ]
Ida, Kenichi [2 ]
机构
[1] Ashikaga Inst Technol, Dept Syst & Informat Engn, Ashikaga City, Tochigi, Japan
[2] Maebashi Inst Technol, Dept Syst & Informat Engn, Maebashi, Gunma, Japan
关键词
G M M; Gaussian Wavelet; Mixture Distribution; Power spectrum;
D O I
10.1016/j.procs.2012.01.087
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of GMM is applied to various fields, such as analysis of biometrics, the voice model in speech recognition, and picture information, and noise removal. A location parameter expresses a position and a scale parameter expresses a measure. A density function with a location parameter and a scale parameter is called location scale density function. A normal distribution is a location scale density function which makes an average a location parameter and has standard deviation as a scale parameter. Wavelet analysis is investigating a relation with an observation signal using a scale parameter and a transformer rate. The analysis of GMM which is a statistics model expressed by linear combination of a gauss basis function is tried using Wavelets Analysis.
引用
收藏
页码:467 / 472
页数:6
相关论文
共 50 条
  • [1] Gaussian pyramid wavelet transform for multiresolution analysis of images
    Olkkonen, H
    Pesola, P
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1996, 58 (04): : 394 - 398
  • [2] The wavelet transform as a Gaussian process for damage detection
    Balafas, Konstantinos
    Kiremidjian, Anne S.
    Rajagopal, Ram
    STRUCTURAL CONTROL & HEALTH MONITORING, 2018, 25 (02):
  • [3] Jitter decomposition by derivatived Gaussian wavelet transform
    Wisetphanichkij, S
    Dejhan, K
    IEEE INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES 2004 (ISCIT 2004), PROCEEDINGS, VOLS 1 AND 2: SMART INFO-MEDIA SYSTEMS, 2004, : 1160 - 1165
  • [4] Jitter decomposition by derivatived Gaussian wavelet transform
    Wisetphanichkij, S. (sompong@telecom.kmitl.ac.th), ECTI, Thailand; Hokkaido University, Graduate School of Inf. Science and Technol.; Hokkaido University, 21st Century COE Program; IEEE Circuits and Systems Society; IEEE Sapporo Section (Institute of Electrical and Electronics Engineers Inc.):
  • [5] Wavelet analysis by wavelet transform matrix
    Jiangxi Electric Power Test and, Research Inst, Nanchang, China
    Dianli Xitong Zidonghue, 24 (36-38):
  • [6] Optoelectronic difference-of-Gaussian wavelet transform system
    Cho, CS
    Ha, SW
    Kim, JC
    Yoon, TH
    Nam, KG
    OPTICAL ENGINEERING, 1997, 36 (12) : 3471 - 3475
  • [7] Optimized dynamic translinear implementation of the Gaussian wavelet transform
    Haddad, SAP
    Verwaal, N
    Houben, R
    Serdijn, WA
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 1, PROCEEDINGS, 2004, : 145 - 148
  • [8] DEBLURRING GAUSSIAN BLUR USING A WAVELET ARRAY TRANSFORM
    VAIRY, M
    VENKATESH, YV
    PATTERN RECOGNITION, 1995, 28 (07) : 965 - 976
  • [9] Leaf recognition based on the combination of wavelet transform and Gaussian interpolation
    Gu, X
    Du, JX
    Wang, XF
    ADVANCES IN INTELLIGENT COMPUTING, PT 1, PROCEEDINGS, 2005, 3644 : 253 - 262
  • [10] Wavelet transform based Gaussian point spread function estimation
    Tao, QC
    He, XH
    Deng, HB
    Liu, Y
    Zhao, J
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 396 - 405