Continuous Nanoparticle Patterning Strategy in Layer-Structured Nanocomposite Fibers

被引:10
|
作者
Xu, Weiheng [1 ]
Franklin, Rahul [2 ]
Ravichandran, Dharneedar [1 ]
Bawareth, Mohammed [1 ]
Jambhulkar, Sayli [1 ]
Zhu, Yuxiang [1 ]
Kakarla, Mounika [3 ]
Ejaz, Faizan [3 ]
Kwon, Beomjin [3 ]
Hassan, Mohammad K. [4 ]
Al-Ejji, Maryam [4 ]
Asadi, Amir [5 ]
Chawla, Nikhilesh [2 ]
Song, Kenan [4 ,6 ]
机构
[1] Arizona State Univ, Ira A Fulton Schools Engn, Polytech Sch TPS, Mesa, AZ 85281 USA
[2] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[3] Arizona State Univ, Sch Engn Matter Transport & Energy SEMTE, Tempe, AZ 85287 USA
[4] Qatar Univ, Ctr Adv Mat, POB 2713, Doha, Qatar
[5] Texas A&M Univ, Dept Mat Sci & Engn, Dept Engn Technol & Ind Distribut, College Stn, TX 77843 USA
[6] Arizona State Univ, Ira A Fulton Schools Engn, Sch Mfg Syst & Networks MSN, Mesa, AZ 85212 USA
基金
美国国家科学基金会;
关键词
anisotropic; energy efficiency; multilayers; passive thermoregulators; polymer nanoparticle composites; THERMAL-CONDUCTIVITY; POLYMER COMPOSITES; BORON-NITRIDE; MECHANICAL-PROPERTIES; WEARABLE STRAIN; CARBON NANOTUBE; PERFORMANCE; POLYURETHANE; ORIENTATION; STRENGTH;
D O I
10.1002/adfm.202204731
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Anisotropic polymer/nanoparticle composites display unique mechanical, thermal, electrical, and optical properties depending on confirmation and configuration control of the composing elements. Processes, such as vapor deposition, ice-templating, nanoparticle self-assembly, additive manufacturing, or layer-by-layer casting, are explored to design and control nanoparticle microstructures with desired anisotropy or isotropy. However, limited attempts are made toward nanoparticle patterning during continuous fiber spinning due to the thin-diameter cross section and 1D features. Thus, this research focuses on a new patterning technique to form ordered nanoparticle assembly in layered composite fibers. As a result, distinct layers can be retained with innovative tool design, unique material combinations, and precise rheology control during fiber spinning. The layer multiplying-enabled nanoparticle patterning is demonstrated in a few material systems, including polyvinyl alcohol (PVA)-boron nitride (BN)/PVA, polyacrylonitrile (PAN)-aluminum (Al)/PAN, and PVA-BN/graphene nanoplatelet (GNP)/PVA systems. This approach demonstrates an unprecedentedly reported fiber manufacturing platform for well-managed layer dimensions and nanoparticle manipulations with directional thermal and electrical properties that can be utilized in broad applications, including structural supports, heat exchangers, electrical conductors, sensors, actuators, and soft robotics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Liquid sorption and nanoparticle intercalation in layer-structured materials
    Dékány, Imre
    Szücs, Anna
    Mogyorósi, Károly
    Király, Zoltán
    Molecular Crystals and Liquid Crystals Science and Technology Section A: Molecular Crystals and Liquid Crystals, 2000, 341 : 363 - 368
  • [2] Liquid sorption and nanoparticle intercalation in layer-structured materials
    Dékány, I
    Szücs, A
    Mogyorósi, K
    Király, Z
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2000, 341 : 1167 - 1172
  • [3] Electrochemical synthesis and properties of layer-structured polypyrrole/montmorillonite nanocomposite films
    Wang, Chang-An
    Chen, Keyu
    Huang, Yong
    Le, Huirong
    JOURNAL OF MATERIALS RESEARCH, 2010, 25 (04) : 658 - 664
  • [4] Electrochemical synthesis and properties of layer-structured polypyrrole/montmorillonite nanocomposite films
    Chang-An Wang
    Keyu Chen
    Yong Huang
    Huirong Le
    Journal of Materials Research, 2010, 25 : 658 - 664
  • [5] Comparison between the Electrical Properties of Bismuth Layer-Structured and Intergrowth Bismuth Layer-Structured Ferroelectric Ceramics
    Cho, Sam Yeon
    Choi, Gi Ppeum
    Bu, Sang Don
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2017, 70 (10) : 934 - 938
  • [6] Comparison between the electrical properties of bismuth layer-structured and intergrowth bismuth layer-structured ferroelectric ceramics
    Sam Yeon Cho
    Gi Ppeum Choi
    Sang Don Bu
    Journal of the Korean Physical Society, 2017, 70 : 934 - 938
  • [7] A series of bismuth layer-structured ferroelectrics
    Nagata, H
    Takahashi, T
    Chikushi, N
    Takenaka, T
    FERROELECTRICS, 2000, 241 (1-4) : 309 - 316
  • [8] Carbon Dot-Functionalized Colloidal Particles for Patterning and Controllable Layer-Structured Photonic Crystals Construction
    Liu, Chang
    Xie, An-Quan
    Li, Guo-Xing
    Li, Qing
    Wang, Cai-Feng
    Zhu, Liangliang
    Chen, Su
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (12): : 6130 - 6137
  • [9] Ferroelectric properties of bismuth layer-structured oxides
    Komura, Kyo
    Nagata, Hajime
    Takenaka, Tadashi
    Ferroelectrics, 1998, 218 (01): : 233 - 240
  • [10] Recent Progress on Bismuth Layer-structured Ferroelectrics
    Zhang Fa-Qiang
    Li Yong-Xiang
    JOURNAL OF INORGANIC MATERIALS, 2014, 29 (05) : 449 - 460