Effect of Mn-doping on the low temperature magnetic phase transitions of BiFeO3

被引:14
|
作者
Kumar, Arun [1 ]
Singh, Preetam [2 ]
Choudhary, Ram Janay [3 ]
Pandey, Dhananjai [1 ]
机构
[1] Banaras Hindu Univ, Indian Inst Technol, Sch Mat Sci & Technol, Varanasi 221005, Uttar Pradesh, India
[2] Banaras Hindu Univ, Indian Inst Technol, Dept Ceram Engn, Varanasi 221005, Uttar Pradesh, India
[3] UGC DAE Consortium Sci Res, Univ Campus,Khandwa Rd, Indore 452001, Madhya Pradesh, India
关键词
Multiferroics; Magnetic phase transitions; Spin-glass; Defect induced magnetism; Oxygen vacancies; PIEZOELECTRIC PROPERTIES; MULTIFERROIC PROPERTIES; SM; SUBSTITUTION; CERAMICS; BEHAVIOR; CRYSTAL; BA;
D O I
10.1016/j.jallcom.2020.154148
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work, we have carried out a comparative study of the low temperature phase transitions using dc magnetization (M (T)) and ac susceptibility (chi (omega, T)) measurements on undoped and 0.3 wt% MnO2 doped BiFeO3 samples in the 2-300 K temperature range. It is shown that MnO2 doping increases the resistivity and decreases the dielectric loss as a result of reduced oxygen vacancy concentration as confirmed by iodometry and x-ray photoelectron spectroscopy (XPS) studies. A comparative study of the dc M (T) and ac chi (omega, T) results on two types of samples reveal that the transitions around 25 K, 110 to 150 K and 260 K are intrinsic to BiFeO3. The widely reported transition at 50 K is argued to be defect induced, as it is absent in the doped samples. We also show that the spin-glass transition temperature (T-SG ) similar to 20 K, determined from an analysis of chi (omega, T), is less than the spin-glass freezing temperature (T-f) similar to 25 K in marked contrast to TsG > T-f reported by earlier workers. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Heavy Mn-doping effect on spontaneous polarization in ferroelectric BiFeO3 thin films
    Matsuo, Hiroki
    Kitanaka, Yuuki
    Inoue, Ryotaro
    Noguchi, Yuji
    Miyayama, Masaru
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (10)
  • [2] Effect of Mn doping on magnetic properties of BiFeO3 Nanopowders
    Hunpratub, Sitchai
    Yimnirun, Rattikorn
    Maensiri, Santi
    INEC: 2010 3RD INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2010, : 1104 - +
  • [3] New magnetic phase transitions in BiFeO3
    Singh, Manoj K.
    Katiyar, Ram S.
    Scott, J. F.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (25)
  • [4] Study of the effect of Mn doping on the BiFeO3 system
    Kothari, Deepti
    Reddy, V. Raghavendra
    Gupta, Ajay
    Phase, D. M.
    Lakshmi, N.
    Deshpande, S. K.
    Awasthi, A. M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (13)
  • [5] PHASE TRANSITIONS IN BIFEO3
    KRAINIK, NN
    KHUCHUA, NP
    ZHDANOVA, VV
    ESVEEV, VA
    SOVIET PHYSICS SOLID STATE,USSR, 1966, 8 (03): : 654 - +
  • [6] Investigations of Low Temperature Phase Transitions in BiFeO3 Ceramic by Infrared Spectroscopy
    Bujakiewicz-Koronska, R.
    Hetmanczyk, L.
    Garbarz-Glos, B.
    Budziak, A.
    Koronski, J.
    Hetmanczyk, J.
    Antonova, M.
    Kalvane, A.
    Nalecz, D.
    FERROELECTRICS, 2011, 417 : 63 - 69
  • [7] Elastic and electrical anomalies at low-temperature phase transitions in BiFeO3
    Redfern, S. A. T.
    Wang, Can
    Hong, J. W.
    Catalan, G.
    Scott, J. F.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (45)
  • [8] Effect of Mn doping on structural, dielectric and magnetic properties of BiFeO3 thin films
    S. Riaz
    S. M. H. Shah
    A. Akbar
    S. Atiq
    S. Naseem
    Journal of Sol-Gel Science and Technology, 2015, 74 : 329 - 339
  • [9] Effect of Mn doping on structural, dielectric and magnetic properties of BiFeO3 thin films
    Riaz, S.
    Shah, S. M. H.
    Akbar, A.
    Atiq, S.
    Naseem, S.
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2015, 74 (02) : 329 - 339
  • [10] Effect of Pr, Mn doping on the structure and properties of BiFeO3
    Lei Zhou
    Guojian Jiang
    Dandan Wu
    Jianbing Chen
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 16372 - 16381