Multipole accelerated magnetic field calculations for superconducting circuits

被引:2
|
作者
Jackman, Kyle [1 ]
Fourie, Coenrad J. [1 ]
机构
[1] Stellenbosch Univ, Dept Elect & Elect Engn, ZA-7600 Stellenbosch, South Africa
来源
SUPERCONDUCTOR SCIENCE & TECHNOLOGY | 2019年 / 32卷 / 01期
基金
新加坡国家研究基金会;
关键词
magnetic field; fast multipole method; superconducting integrated circuits; flux trapping; Biot-Savart law; ANALYTICAL COMPUTATION; INDUCTANCE EXTRACTION; INTEGRAL-EQUATIONS; CONDUCTORS; ALGORITHM; FILMS; STRIP;
D O I
10.1088/1361-6668/aae957
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper presents an adaptive fast multipole algorithm to accelerate the computation of magnetic fields surrounding current-carrying superconducting volumes. The algorithm is based on a hierarchical tree of cubic cells and vector spherical harmonics are used to approximate the gradient of Green's function. The derivation of the multipole and local expansion coefficients are presented, including the implementation of these coefficients within FastCap's multipole algorithm. We demonstrate how the proposed algorithm can be used to calculate the magnetic fields of trapped flux and the magnetic fields surrounding type-II superconducting microstrips and compare the results to analytical solutions. The overall complexity of our multipole algorithm is found empirically to rise linearly, O(N), with N evaluation points.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Magnetic field measurement on superconducting multipole wiggler with narrow duct
    Fan, TC
    Lin, FY
    Huang, MH
    Chang, CH
    Hwang, CS
    PROCEEDINGS OF THE 2003 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, 2003, : 1047 - 1049
  • [2] Superconducting multipole triplet field measurements
    Esper, A.
    Stodel, M. H.
    Savajols, H.
    Authier, M.
    Aburas, M.
    Carville, F.
    Drouart, A.
    Jacquot, B.
    Lefevre, A.
    Esnault, F.
    IPAC23 PROCEEDINGS, 2024, 2687
  • [3] Magnetic System of the High-Field Superconducting Multipole Wiggler for LSU CAMD
    Khruschev, S.
    Lev, V.
    Mezentsev, N.
    Shkaruba, V.
    Syrovatin, V.
    Tarasenko, O.
    Tsukanov, V.
    Volkov, A.
    Zorin, A.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2016, 26 (03)
  • [4] Magnetic Field Design of a Superconducting Multipole Wiggler for Imaging and Biomedical Application Beamline
    Wang, H. J.
    Xu, J. P.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2010, 20 (03) : 300 - 303
  • [5] CALCULATIONS OF COMBINED STELLARATOR-MULTIPOLE TOROIDAL MAGNETIC-FIELD CONFIGURATIONS
    FREIS, RP
    HARTMAN, CW
    KILLEEN, J
    MIRIN, AA
    UMAN, MF
    NUCLEAR FUSION, 1977, 17 (02) : 281 - 289
  • [6] Ginzburg-Landau calculations for a superconducting cylinder in a magnetic field
    Zharkov, GF
    Zharkov, VG
    Zvetkov, AY
    PHYSICAL REVIEW B, 2000, 61 (18) : 12293 - 12301
  • [7] SIMPLIFIED THEORY OF MULTIPOLE SUPERCONDUCTING MAGNETIC SEPARATOR
    HLASNIK, I
    IEEE TRANSACTIONS ON MAGNETICS, 1981, 17 (05) : 1990 - 1993
  • [8] Superconducting Multipole Wigglers: Magnetic and Cryogenic Systems
    Mezentsev, N.
    Shkaruba, V
    Syrovatin, V
    13TH CRYOGENICS 2014 IIR INTERNATIONAL CONFERENCE, 2014, 2014 (01): : 81 - 87
  • [9] Software Tools for Flux Trapping and Magnetic Field Analysis in Superconducting Circuits
    Fourie, Coenrad Johann
    Jackman, Kyle
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2019, 29 (05)
  • [10] CALCULATIONS OF HIGHER MULTIPOLE COMPONENTS IN A LARGE SUPERCONDUCTING QUADRUPOLE MAGNET
    NAPOLITANO, J
    HUNTER, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1991, 301 (03): : 465 - 472