Multi-stage hydrothermal liquefaction modeling of sludge and microalgae biomass to increase bio-oil yield

被引:12
|
作者
Bisht, Bhawna [1 ]
Gururani, Prateek [2 ]
Pandey, Shivam [3 ]
Jaiswal, Krishna Kumar [4 ]
Kumar, Sanjay [1 ]
Vlaskin, Mikhail S. [5 ]
Verma, Monu [6 ]
Kim, Hyunook [6 ]
Kumar, Vinod [1 ,7 ]
机构
[1] Graph Era Deemed Univ, Dept Life Sci, Algal Res & Bioenergy Lab, Dehra Dun 248002, Uttaranchal, India
[2] Graph Era Deemed Univ, Dept Biotechnol, Dehra Dun 248002, Uttaranchal, India
[3] Uttaranchal Univ, Dept Chem, Dehra Dun 248007, India
[4] Pondicherry Univ, Dept Green Energy Technol, Pondicherry 605014, India
[5] Russian Acad Sci, Joint Inst High Temp, 13-2 Izhorskaya St, Moscow 125412, Russia
[6] Univ Seoul, Dept Environm Engn, Water Energy Nexus Lab, Seoul 02504, South Korea
[7] RUDN Univ, PeoplesFriendship Univ Russia, Moscow 117198, Russia
基金
新加坡国家研究基金会;
关键词
Hydrothermal liquefaction; Sludge; Microalgae; Chlorella sorokiniana; Co-HTL; SEWAGE-SLUDGE; CO-LIQUEFACTION; THERMOCHEMICAL LIQUEFACTION; HYDRO-LIQUEFACTION; ENERGY RECOVERY; ALGAL BIOMASS; WOODY BIOMASS; SWINE MANURE; TEMPERATURE; PYROLYSIS;
D O I
10.1016/j.fuel.2022.125253
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study aims to elucidate the effect of Multi-Stage HTL with a constant resident time of 30 min for three different feedstocks including kitchen wastewater sludge (KwWs), freshwater microalgae Chlorella sorokiniana (UUIND6), Co-HTL (KwWs + UUIND6) to obtain the maximum bio-oil yield. According to the results obtained, KwWs appears to be the most suitable for conversion into energy-dense bio-oil under a sustainable biorefinery approach for increased bio-oil yields i.e., 72.75 +/- 0.37 wt%, with HHV of 40.52 MJ/kg and energy recovery of 53.64 wt%. Further, the bio-oils and bio-chars derived from different types of biomasses obtained at different temperature conditions were analyzed by GC-MS, NMR, FTIR, and Raman spectroscopy to identify variations in the bio-crude compounds.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Process Water Recycle in Hydrothermal Liquefaction of Microalgae To Enhance Bio-oil Yield
    Ramos-Tercero, Elia Armandina
    Bertucco, Alberto
    Brilman, D. W. F.
    ENERGY & FUELS, 2015, 29 (04) : 2422 - 2430
  • [2] A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass
    Akhtar, Javaid
    Amin, Nor Aishah Saidina
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (03): : 1615 - 1624
  • [3] Hydrothermal Liquefaction of Microalgae to Bio-oil Using Zeolite Catalysts
    Ramli, Anita
    Fakhruldin, Afeefah
    Azmi, Adam
    Anuar, Nur Akila Syakida Idayu Khairul
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2024, 20 (05): : 1235 - 1247
  • [4] Enhancing the Yield and Performance of Bio-Oil Produced from the Hydrothermal Liquefaction of Microalgae with High Solid Contents: Optimization and Modeling
    Wang, Zhicong
    Yin, Caijia
    Su, Jian
    Duan, Peigao
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (46) : 20462 - 20473
  • [5] Bio-oil Production via Subcritical Hydrothermal Liquefaction of Biomass
    Durak, Halil
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [6] Hydrothermal catalytic liquefaction mechanisms of agal biomass to bio-oil
    Xu, Yufu
    Hu, Xianguo
    Yu, Huiqiang
    Wang, Kaichao
    Cui, Zhen
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2016, 38 (10) : 1478 - 1484
  • [7] Microalgae bio-oil production by pyrolysis and hydrothermal liquefaction: Mechanism and characteristics
    Agbulut, Umit
    Sirohi, Ranjna
    Lichtfouse, Eric
    Chen, Wei-Hsin
    Len, Christophe
    Show, Pau Loke
    Le, Anh Tuan
    Nguyen, Xuan Phuong
    Hoang, Anh Tuan
    BIORESOURCE TECHNOLOGY, 2023, 376
  • [8] Numerical Evaluation of Bio-Oil Yield Prediction Models for Hydrothermal Liquefaction of High-Lipid Microalgae
    Borazjani, Ziba
    Azin, Reza
    Osfouri, Shahriar
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (12) : 16023 - 16037
  • [9] High yield bio-oil production by hydrothermal liquefaction of a hydrocarbon-rich microalgae and biocrude upgrading
    Ren, Rui
    Han, Xue
    Zhang, Haiping
    Lin, Hongfei
    Zhao, Jianshe
    Zheng, Ying
    Wang, Hui
    CARBON RESOURCES CONVERSION, 2018, 1 (02): : 153 - 159
  • [10] Numerical Evaluation of Bio-Oil Yield Prediction Models for Hydrothermal Liquefaction of High-Lipid Microalgae
    Ziba Borazjani
    Reza Azin
    Shahriar Osfouri
    Arabian Journal for Science and Engineering, 2023, 48 : 16023 - 16037